【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,小明計劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費,乙公司表示:按每千克16元收費,另加包裝費3元,設(shè)小明快遞物品x千克.

(1)根據(jù)題意,填寫下表:

快遞物品重量(千克)

0.5

1

3

4

甲公司收費(元)

22

乙公司收費(元)

11

51

67

(2)設(shè)甲快遞公司收費y1元,乙快遞公司收費y2元,分別寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)x>3時,小明應(yīng)選擇哪家快遞公司更省錢?請說明理由.

【答案】111,19,52,67;(2;y2=16x+3;(3)當(dāng)3x4時,小明應(yīng)選擇乙公司省錢;當(dāng)x=4時,兩家公司費用一樣;當(dāng)x4,小明應(yīng)選擇甲公司省錢.

【解析】

1)根據(jù)甲、乙公司的收費方式,求出y值即可;

2)根據(jù)甲、乙公司的收費方式結(jié)合數(shù)量關(guān)系,找出y1、y2(元)與x(千克)之間的函數(shù)關(guān)系式;

3x3,分別求出y1y2、y1=y2、y1y2x的取值范圍,綜上即可得出結(jié)論.

解:(1)當(dāng)x=0.5時,y=22×0.5=11;

當(dāng)x=1時,y=16×1+3=19

當(dāng)x=3時,y=22+15×2=52;

當(dāng)x=4時,y=22+15×3=67.

故答案為:11;1952;67

2)當(dāng)0x1時,y1=22x

當(dāng)x1時,y1=22+15x-1=15x+7

y2=16x+3x0);

3)當(dāng)x3時,

當(dāng)y1y2時,有15x+716x+3,

解得:x4;

當(dāng)y2=y2時,有15x+7=16x+3,

解得:x=4;

當(dāng)y1y2時,有15x+716x+3,

解得:x4

∴當(dāng)3x4時,小明應(yīng)選擇乙公司省錢;當(dāng)x=4時,兩家公司費用一樣;當(dāng)x4,小明應(yīng)選擇甲公司省錢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示的是帶支架功能的某品牌手機殼,將其側(cè)面抽象為如圖2所示的幾何圖形,已知AB=5cm,BAC=60°,C=45°,則AC的長(≈1.732,結(jié)果精確到0.1cm)為( 。

A. 3.4cm B. 4.6cm C. 5.8cm D. 6.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1,若OCBA,AOC=36°,則( 。

A. BAO的距離為sin54°

B. AOC的距離為sin36°sin54°

C. BAO的距離為tan36°

D. AOC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、BC上,且AE=BF=1,CE、DF相交于點O,下列結(jié)論:

①∠DOC=90°,②OC=OE,③tan∠OCD=,④△COD的面積等于四邊形BEOF的面積,正確的有 ( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上兩點AB表示的數(shù)分別為﹣2,6,用符號“AB”來表示點A和點B之間的距離.

1)求AB的值;

2)若在數(shù)軸上存在一點C,使AC3BC,求點C表示的數(shù);

3)在(2)的條件下,點C位于A、B兩點之間.點A1個單位/秒的速度沿著數(shù)軸的正方向運動,2秒后點C2個單位/秒的速度也沿著數(shù)軸的正方向運動,到達(dá)B點處立刻返回沿著數(shù)軸的負(fù)方向運動,直到點A到達(dá)點B,兩個點同時停止運動.設(shè)點A運動的時間為t,在此過程中存在t使得AC3BC仍成立,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算與簡化:

1)﹣22[11×0.6+(﹣0.224]

22a29b)﹣3(﹣5a2b)﹣3b

3x+2

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)數(shù)a,b在軸上的表示如圖所示,則下列結(jié)論中:①ab0,②a+b0,③ab0,④a,⑤﹣a>﹣b,正確的有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在∠MON的邊ON上,ABOMB,AE=OBDEONE,AD=AO,DCOMC

1)求證:四邊形ABCD是矩形;

2)若DE=3,OE=9,求ABAD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 A 處觀察 C 測得仰角∠CAD=31°,且 A、B 的水平距離 AE=800 米,斜坡 AB 的坡度i 1: 2 ,索道 BC 的坡度i 2 : 3 ,CD⊥AD 于 D,BF⊥CD 于 F,則索道BC 的長大約是( )

(參考數(shù)據(jù):tan31°≈0. cos31°≈0.9,≈3.6)

A. 1400 B. 1440 C. 1500 D. 1540

查看答案和解析>>

同步練習(xí)冊答案