【題目】定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三階等腰線”.

(1)請你在圖1,圖2中用兩種不同的方法畫出頂角為36°的等腰三角形的“三階等腰線”,并標注每個等腰三角形頂角的度數(shù).(若兩種方法分得的三角形成3對全等三角形,則視為同一種)

1 2 備用1 備用2

(2)△ABC中,∠B=36°,ADDE△ABC三階等腰線,點DBC邊上,點EAC邊上,且AD=BD,DE=CE,設(shè)∠C=x°,試畫出示意圖,并求出x所有可能的值.

【答案】(1)畫圖見解析;(2)滿足條件的x=24或 36.

【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)和三階等腰線的定義: ①可以作兩底角角平分線, ②先作底角角平分線,再作平行線,

(2)先根據(jù)三角形內(nèi)角和,等腰三角形的性質(zhì)和三階等腰線的定義,畫滿足要求的圖形,然后根據(jù)等腰三角形的性質(zhì)用x表示出三角形的內(nèi)角,利用三角形內(nèi)角和列出關(guān)于x的方程,解方程即可.

試題解析:(1)如圖所示:

(2)①當AD=AE,

2x+x=36+36,

x=24.

②當AD=DE,

36+36+2x+x=180,

x=36.

③當EA=DE,

90- x+36+36+x=180,

x不存在,應(yīng)舍去.

綜合上述:滿足條件的x=24 36.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地連續(xù)九天的最高氣溫統(tǒng)計如下表:

最高氣溫(℃

22

23

24

25

天數(shù)

1

2

2

4

則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是( 。

A. 24,25 B. 24.5,25 C. 25,24 D. 23.5,24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC

2)已知SABC40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點E是邊AC的中點,問在點M運動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形紙片ABC中,C=90°,A=30°,AC=3,折疊該紙片,如圖,使點A和點B重合,折痕與AB、AC分別相交于點D和點E,折痕DE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個棱柱共有12個頂點,且所有側(cè)棱長的和為120 cm,則此棱柱的每條側(cè)棱的長為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEF∥ABBCF,交ACE,過點OOD⊥BCD,下列四個結(jié)論:

①∠AOB=90°+C;AE+BF=EF③當∠C=90°時,E,F分別是AC,BC的中點;④若OD=a,CE+CF=2b,則SCEF=ab其中正確的是( 。

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是O的直徑,點P在弧AB上(不含點A、B),把AOP沿OP對折,點A的對應(yīng)點C恰好落在O上.

(1)當P、C都在AB上方時(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);

(2)當P在AB上方而C在AB下方時(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;

(3)當P、C都在AB上方時(如圖3),過C點作CD直線AP于D,且CD是O的切線,證明:AB=4PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果單項式﹣3xa+2y3 2ybx6 是同類項,那么 a、b 的值分別是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB于點E,且CD=24,點M在O上,MD經(jīng)過圓心O,聯(lián)結(jié)MB.

(1)若BE=8,求O的半徑;

(2)若DMB=D,求線段OE的長.

查看答案和解析>>

同步練習(xí)冊答案