【題目】如圖,3×3的方格分為上中下三層第一層有一枚黑色方塊甲,可在方格AB、C中移動第二層有兩枚固定不動的黑色方塊第三層有一枚黑色方塊乙可在方格DEF中移動甲、乙移入方格后,四枚黑色方塊構成各種拼圖

(1)若乙固定在E,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是多少

(2)若甲、乙均可在本層移動,用畫樹狀圖法或列表法求出黑色方塊所構成拼圖是軸對稱圖形的概率

【答案】(1);(2).

【解析】

(1)若乙固定在E,求出移動甲后黑色方塊構成的拼圖一共有多少種可能其中是軸對稱圖形的有幾種可能,由此即可解決問題

(2)畫出樹狀圖即可解決問題

(1)若乙固定在移動甲后黑色方塊構成的拼圖一共有種可能,其中有種情形是軸對稱圖形,所以若乙固定在,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率為

(2)總共有種等可能的結果,黑色方塊所構成拼圖是軸對稱圖形的結果有,所以,所求的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系網格中,將ABC進行位似變換得到A1B1C1

(1)A1B1C1ABC的位似比是 ;

(2)畫出A1B1C1關于y軸對稱的A2B2C2

(3)設點P(a,b)為ABC內一點,則依上述兩次變換后,點P在A2B2C2內的對應點P2的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于鈍角α,定義它的三角函數(shù)值如下:sinαsin (180°α),cosα=-cos (180°α);若一個三角形的三個內角的比是114,AB是這個三角形的兩個頂點,sinA,cosB是方程4x2mx10的兩個不相等的實數(shù)根,求m的值及∠A和∠B的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中(如圖).已知拋物線y=﹣x2+bx+c經過點A(﹣1,0)和點B(0,),頂點為C,點D在其對稱軸上且位于點C下方,將線段DC繞點D按順時針方向旋轉90°,點C落在拋物線上的點P處.

(1)求這條拋物線的表達式;

(2)求線段CD的長;

(3)將拋物線平移,使其頂點C移到原點O的位置,這時點P落在點E的位置,如果點My軸上,且以O、D、E、M為頂點的四邊形面積為8,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將2019個邊長為1的正方形按如圖所示的方式排列,點AA1,A2,A3,……A2019和點M,M1,M2……,M2018是正方形的頂點,連接A1M,A2M1,A3M2,……A2018分別交正方形的邊A1M,A2M1,A3M2,……A2018M2017于點N1,N2,N3……N2018,四邊形M1N1A1A2的面積是,四邊形M2N2A2A3的面積是,…,則為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y(k≠0,k是常數(shù))的圖象過點P(-3,5).

(1)求此反比例函數(shù)的解析式;

(2)在函數(shù)圖象上有兩點(a1,b1)和(a2,b2),若a1a2,試判斷b1b2的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程(k﹣1)x2+2kx+2=0.

(1)求證:無論k為何值,方程總有實數(shù)根.

(2)設x1,x2是方程(k﹣1)x2+2kx+2=0的兩個根,記,S的值能為2嗎?若能,求出此時k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點上方2米處加固另一條鋼線ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線ED的長度約為多少米?(結果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)

查看答案和解析>>

同步練習冊答案