【題目】已知函數(shù)的圖象與兩坐標(biāo)軸共有兩個(gè)交點(diǎn),則的值為______

【答案】1,2或-2

【解析】

需要分三種情況:①函數(shù)為一次函數(shù)時(shí);②函數(shù)為二次函數(shù),與x軸有一個(gè)交點(diǎn),與y軸有一個(gè)交點(diǎn);③函數(shù)為二次函數(shù),有一定經(jīng)過原點(diǎn);按以上三種情況分別求出a的值即可.

解:當(dāng)函數(shù)為一次函數(shù)時(shí),即a-1=0,解得a=1;

②當(dāng)函數(shù)為二次函數(shù)時(shí)(a1),與x軸有一個(gè)交點(diǎn),與y軸有一個(gè)交點(diǎn),

x軸有一個(gè)交點(diǎn),

.∴△=-2a2-4a+2)(a-1=0,解得:a=2

③函數(shù)為二次函數(shù)時(shí)(a1),與x軸有兩個(gè)交點(diǎn),與y軸的交點(diǎn)和x軸上的一個(gè)交點(diǎn)重合,即圖像經(jīng)過原點(diǎn),

a+2=0a=-2.

當(dāng)a=-2,此時(shí)y=,與坐標(biāo)軸有兩個(gè)交點(diǎn).

故答案為1,2或-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C = 90°,∠BAC 的平分線交BC于點(diǎn)D,點(diǎn)OAB上,以點(diǎn)O為圓心、OA長(zhǎng)為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)OA = 2,∠B = 30°,求涂色部分的面積(結(jié)果保留和根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請(qǐng)你確定燈泡所在的位置,并畫出表示小亮在燈光下形成的影子線段.

2)如果燈桿高12m,小亮的身高1.6m,小亮與燈桿的距離13m,請(qǐng)求出小亮影子的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AGBC,點(diǎn)EA出發(fā)沿射線AG1cm/s的速度與運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D是,求證ADE≌△CDF;

(2)填空題:①當(dāng)t________s時(shí),四邊形ACFE是菱形;

②當(dāng)t________s時(shí),以AC,FE為頂點(diǎn)的四邊形為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90° ,AB=8AC=10.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從AB運(yùn)動(dòng);同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從CA運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)時(shí),另一個(gè)點(diǎn)也隨即停止運(yùn)動(dòng),從出發(fā)開始___秒時(shí),△APQ與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的位置如圖所示:(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形)

1)畫出關(guān)于點(diǎn)的中心對(duì)稱圖形;

2)將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的;

3)請(qǐng)利用格點(diǎn)圖,僅用無刻度的直尺畫出邊上的高(保留作圖痕跡);

4P軸上一點(diǎn),且PBC是以BC為直角邊的直角三角形.請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點(diǎn)M,N,且ACQNAM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫出t可取的一切值 (單位:秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC,點(diǎn)DABC內(nèi)的一點(diǎn),ADB=120°,ADC=90°,ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°ACE連接DE

1)求證AD=DE;

2)求DCE的度數(shù)

3)若BD=1,ADCD的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案