【題目】 已知∠BAC=36°,△A1B1A2△A2B2A3,△A3B3A4,,△AnBnAn+1都是頂角為36°的等腰三角形,即∠A1B1A2=∠A2B2A3=∠A3B3A4=…=∠AnBnAn+1=36°,點A1,A2A3,,An在射線AC上,點B1B2,B3,,Bn在射線AB上,若A1A2=1,則線段A2018A2019的長為______

【答案】

【解析】

先證明△A2B1A1∽△A2AB1,設AA1=A1B1=B1A2=x,則有=,從而可求出x的值,同理可得A2A3的長,A3A4的長,…,根據(jù)規(guī)律可得出結果.

解:∵∠A=∠A1B1A2=36°,A1B1=A2B1,

∴∠AA2B1=B1A1A2=72°,

∠A=∠AB1A1=36°

AA1=A1B1=B1A2,△A2B1A1∽△A2AB1,

AA1=A1B1=B1A2=x

=

=,

解得x=(舍去負根),

同理可得:AA2=A2B2=B2A3=1+,

A2A3=y

∵△A3B2A2∽△A3AB2,

=,

=,

解得:y=,即A2A3=,

同理可得:A3A4=2

A2018A2019的長=2017,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售一種商品,經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的周銷售量y()是售價x(/)的一次函數(shù),其售價、周銷售量、周銷售利潤w()的三組對應值如表:

售價x(/)

30

40

60

周銷售量y()

90

70

30

周銷售利潤w()

450

1050

1050

注:周銷售利潤=周銷售量×(售價﹣進價)

1)求y關于x的函數(shù)解析式(不要求寫出自變量的取值范圍);

2)當售價定為多少時,周銷售利潤最大,最大利潤是多少?

3)由于某種原因,該商品進價提高了m/(m0),物價部門規(guī)定該商品售價不得超過45/件,該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中的函數(shù)關系.若周銷售最大利潤是1080元,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,已知EDFBC的中位線,沿線段EDFED剪下后拼接在圖乙中BEA的位置.

1)從FEDBEA的圖形變換,可以認為是(填平移或軸對稱或旋轉)變換;

2)試判斷圖乙中四邊形ABCD的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的不等式組有且只有四個整數(shù)解,又關于x的分式方程﹣2=有正數(shù)解,則滿足條件的整數(shù)k的和為( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料

計算:(1×+)﹣(1)(+),令+t,則:

原式=(1t)(t+)﹣(1ttt+t2+t2

在上面的問題中,用一個字母代表式子中的某一部分,能達到簡化計算的目的,這種思想方法叫做換元法,請用換元法解決下列問題:

1)計算:(1×+)﹣(1×+

2)因式分解:(a25a+3)(a25a+7+4

3)解方程:(x2+4x+1)(x2+4x+3)=3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點DE⊙O上一點,且∠AED=45°

1)判斷CD⊙O的位置關系,并說明理由;

2)若⊙O半徑為4cmAE=6cm,求∠ADE的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD是矩形,過點DDFACBA的延長線于點F

1)求證:四邊形ACDF是平行四邊形;

2)若AB3,DF5,求AEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線yx+2x軸交于點A,與y軸交于點B,拋物線yax2+bx+ca0)經(jīng)過點AB

1)求a、b滿足的關系式及c的值.

2)當x0時,若yax2+bx+ca0)的函數(shù)值隨x的增大而增大,求a的取值范圍.

3)如圖,當a=﹣1時,在拋物線上是否存在點P,使PAB的面積為1?若存在,請求出符合條件的所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知雙曲線在第一象限內(nèi)交于兩點,,則扇形的面積是__________

查看答案和解析>>

同步練習冊答案