【題目】已知一次函數(shù)的圖象與二次函數(shù)(為常數(shù))的圖象交于兩點,且點的坐標(biāo)為.
(1)求出的值及點的坐標(biāo);
(2)設(shè),若時,隨著的增大而增大,且也隨著的增大而增大,求的最小值和的最大值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C、D四個車站的位置如圖所示:
(1)求A、D兩站的距離;
(2)求C、D兩站的距離;
(3)比較A、C兩站的距離與B、D兩站的距離,哪兩站的距離更大?大多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx-2與x軸的兩個交點分別為A(1,0),B(4,0),與y軸的交點為C.
(1)求出拋物線的解析式及點C的坐標(biāo);
(2)點P是在直線x=4右側(cè)的拋物線上的一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OCB相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:當(dāng)空氣污染指數(shù)達0—50時為1級,質(zhì)量為優(yōu);51—100時為2級,質(zhì)量為良;101—200時為3級,輕度污染;201—300時為4級,中度污染;300以上時為5級,重度污染.某城市隨機抽取了2015年某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
(1) 本次調(diào)查共抽取了 天的空氣質(zhì)量檢測結(jié)果進行統(tǒng)計;
(2) 補全條形統(tǒng)計圖;
(3) 扇形統(tǒng)計圖中3級空氣質(zhì)量所對應(yīng)的圓心角為 °;
(4) 如果空氣污染達到中度污染或者以上,將不適宜進行戶外活動,根據(jù)目前的統(tǒng)計,請你估計2015年該城市有多少天不適宜開展戶外活動.(2015年共365天)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動:第一次將點A向左移動3個單位長度到達點A1,第2次將點A1向右平移6個單位長度到達點A2,第3次將點A2向左移動9個單位長度到達點A3…則第6次移動到點A6時,點A6在數(shù)軸上對應(yīng)的實數(shù)是_____;按照這種規(guī)律移動下去,第2017次移動到點A2017時,A2017在數(shù)軸上對應(yīng)的實數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上,Rt△ABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n,半圓O交BC邊于點D,將半圓O繞點C按逆時針方向旋轉(zhuǎn),點D隨半圓O旋轉(zhuǎn)且∠ECD始終等于∠ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).
(1)當(dāng)α=0°時,連接DE,則∠CDE= °,CD= ;
(2)試判斷:旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明;
(3)若m=10,n=8,當(dāng)旋轉(zhuǎn)的角度α恰為∠ACB的大小時,求線段BD的長;
(4)若m=6,n=,當(dāng)半圓O旋轉(zhuǎn)至與△ABC的邊相切時,直接寫出線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B. C,與y軸的負(fù)半軸相交于D,拋物線y=x+bx+c經(jīng)過B. C. D三點。
(1)求此拋物線的解析式;
(2)若動直線MN(MN∥x軸)從點D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點,動點P同時從點C出發(fā),在線段OC上以每秒2個長度單位的速度向原點O運動,連接PM,設(shè)運動時間為t秒,若以P、C. M為頂點的三角形與△OCD相似,求實數(shù)t的值;
②當(dāng)t為何值時, 的值最大,并求出最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形,點為對角線上一個動點,為邊上一點,且.
(1)求證:;
(2)若四邊形的面積為25,試探求與滿足的數(shù)量關(guān)系式;
(3)若為射線上的點,設(shè),四邊形的周長為,且,求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:
(a,b)★(c,d)=bc-ad.
例如:(1,2)★(3,4)=2×3-1×4=2.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(2,-3)★(3,-2)=_______;
(2)若有理數(shù)對(-3,2x-1)★(1,x+1)=7,則x=_______;
(3)當(dāng)滿足等式(-3,2x-1)★(k,x+k)=5+2k的x是整數(shù)時,求整數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com