【題目】已知:在中,,將如圖擺放,使得的兩條邊分別經(jīng)過點和點

1)當將如圖1擺放時,則_________度.

2)當將如圖2擺放時,請求出的度數(shù),并說明理由.

3)能否將擺放到某個位置時,使得、同時平分?直接寫出結論_______(填不能

【答案】1240;(2理由見解析;(3)不能

【解析】

1)要求∠ABD+ACD的度數(shù),只要求出∠ABC+CBD+ACB+BCD,利用三角形內角和定理得出∠ABC+ACB=180°-A=180°-40°=140°;根據(jù)三角形內角和定理,∠CBD+BCD=E+F=100°,得出∠ABD+ACD=ABC+CBD+ACB+BCD=140°+100°=240°;

2)要求∠ABD+ACD的度數(shù),只要求出∠ABC+ACB-(∠BCD+CBD)的度數(shù).根據(jù)三角形內角和定理,∠CBD+BCD=E+F=100°;根據(jù)三角形內角和定理得,∠ABC+ACB=180°-A=140°,得出∠ABD+ACD=ABC+ACB-(∠BCD+CBD=140°-100°=40°

3)不能.假設能將DEF擺放到某個位置時,使得BD、CD同時平分∠ABC和∠ACB.則∠CBD+BCD=ABD+ACD=100°,那么∠ABC+ACB=200°,與三角形內角和定理矛盾,所以不能.

(1)ABC,A+ABC+ACB=180°,A=40°

∴∠ABC+ACB=180°A=180°40°=140°

BCD,D+BCD+CBD=180°

∴∠BCD+CBD=180°D

DEF,D+E+F=180°

∴∠E+F=180°D

∴∠CBD+BCD=E+F=100°

∴∠ABD+ACD=ABC+CBD+ACB+BCD=140°+100°=240°.

(2)ABD+ACD=40°;

理由如下:

∵∠E+F=100°

∴∠D=180°(E+F)=80°

∴∠ABD+ACD=180°ADBCDCB=180°40°(180°80°)=40°;

(3)不能.假設能將DEF擺放到某個位置時,使得BD、CD同時平分∠ABC和∠ACB.則∠CBD+BCD=ABD+ACD=100°,那么∠ABC+ACB=200°,與三角形內角和定理矛盾,所以不能.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1 :y=-3x+3x軸交于點D,直線l2經(jīng)過A(4,0)、B(3,)兩點,直線l1 與直線l2交于點C.

(1)求直線l2的解析式和點C的坐標;

(2) y軸上是否存在一點P,使得四邊形PDBC的周長最小?若存在,請求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3,tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5

△AHO的周長=AO+AH+OH=3+4+5=12;

2)將A點坐標代入y=k≠0),得

k=-4×3=-12,

反比例函數(shù)的解析式為y=

y=-2時,-2=,解得x=6,即B6-2).

A、B點坐標代入y=ax+b,得

解得,

一次函數(shù)的解析式為y=-x+1

考點:反比例函數(shù)與一次函數(shù)的交點問題.

型】解答
束】
21

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.

(1)求證:CF為⊙O的切線;

(2)填空:當∠CAB的度數(shù)為________時,四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將ABO繞點A順時針旋轉到AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將AB1C1繞點B1順時針旋轉到A1B1C2的位置,點C2在x軸上,將A1B1C2繞點C2順時針旋轉到A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則B2的坐標為_____;點B2016的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)操作發(fā)現(xiàn):

如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內部,延長AF交CD于點G.猜想線段GF與GC有何數(shù)量關系?并證明你的結論.

(2)類比探究:

如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,O是對角線AC的中點,過OAC的垂線與邊ADBC分別交于E、F

1)求證:四邊形AFCE是菱形;

2)若AFBC,試猜想四邊形AFCE是什么特殊四邊形,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解方程組

2)解不等式

3)利用簡單方法計算:

4)因式分解:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知BE平分∠ABC,E點在線段AD上,∠ABE=∠AEB,ADBC平行嗎?為什么?

解:因為BE平分∠ABC(已知)

所以∠ABE=∠EBC    

因為∠ABE=∠AEB   

所以∠   =∠      

所以ADBC    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為(0,4),線段的位置如圖所示,其中點的坐標為(,),點的坐標為(3,).

(1)將線段平移得到線段,其中點的對應點為,點的對應點為點.

①點平移到點的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;

②點的坐標為 .

(2)(1)的條件下,若點的坐標為(40),連接,畫出圖形并求的面積.

查看答案和解析>>

同步練習冊答案