已知:如圖,拋物線y=x2-2x+3與y軸交于點(diǎn)A,頂點(diǎn)是點(diǎn)P,過點(diǎn)P作PB⊥x軸于點(diǎn)B.平移該拋物線,使其經(jīng)過A、B兩點(diǎn).
(1)求平移后拋物線的解析式及其與x軸另一交點(diǎn)C的坐標(biāo);
(2)設(shè)點(diǎn)D是直線OP上的一個(gè)點(diǎn),如果∠CDP=∠AOP,求出點(diǎn)D的坐標(biāo).

【答案】分析:(1)根據(jù)拋物線解析式求出點(diǎn)A、B、P的坐標(biāo),再根據(jù)平移變換不改變拋物線的形狀,設(shè)平移后的拋物線解析式為y=x2+bx+c,然后把點(diǎn)A、B的坐標(biāo)代入求出b、c的值,從而得到平移后的拋物線解析式,再令y=0,解關(guān)于x的一元二次方程即可得到點(diǎn)C的坐標(biāo);
(2)先求出直線OP的解析式,然后分點(diǎn)D在第一象限時(shí),根據(jù)內(nèi)錯(cuò)角相等兩直線平行求出CD1∥y軸可得CD1⊥x軸,從而求出點(diǎn)D的橫坐標(biāo)坐標(biāo)是3,然后代入直線OP的解析式,計(jì)算即可求出點(diǎn)D1的坐標(biāo);點(diǎn)D在第三象限時(shí),求出∠CD1P=∠CD2P,根據(jù)等角對(duì)等邊可得CD1=CD2,設(shè)D2(x,2x),然后利用勾股定理列式計(jì)算求出x的值,即可得解.
解答:解:(1)令x=0,則y=3,
∴點(diǎn)A的坐標(biāo)為(0,3),
∵y=x2-2x+3=(x-1)2+2,
∴頂點(diǎn)P(1,2)、B(1,0),
設(shè)平移后拋物線的解析式為y=x2+bx+c,
將點(diǎn)A(0,3)、B(1,0)的坐標(biāo)代入得,,
解得,
∴平移后拋物線的解析式為拋物線y=x2-4x+3,
令y=0,則x2-4x+3=0,
解得,x1=1,x2=3,
所以,點(diǎn)C(3,0);

(2)如圖,直線OP過P(1,2),
所以,直線OP解析式為y=2x,
①點(diǎn)D在第一象限時(shí),∵∠CD1P=∠AOP,
∴CD1∥y軸,
∴CD1⊥x軸,
∴點(diǎn)D的橫坐標(biāo)與點(diǎn)C的橫坐標(biāo)相同,都是3,
x=3時(shí),y=2×3=6,
∴點(diǎn)D1(3,6),
②點(diǎn)D在第三象限時(shí),
∵∠CD1P=∠AOP,∠CD2P=∠AOP,
∴∠CD1P=∠CD2P,
∴CD1=CD2,且CD2=CD1=6,
設(shè)D2(x,2x),則=6,
整理得,5x2-6x-27=0,
解得x1=3(為點(diǎn)D1,舍去),x2=-,
所以,點(diǎn)D1(3,6)、D2(-,-).
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要考查了待定系數(shù)法求二次函數(shù)解析式,平移只改變只改變圖形的位置不改變圖形的形狀與大小的性質(zhì),平行線的判定與性質(zhì),等角對(duì)等邊的性質(zhì),綜合題,但難度不大,(2)要注意分情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1和3,精英家教網(wǎng)與y軸交點(diǎn)C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點(diǎn)M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過M、A兩點(diǎn)的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點(diǎn)P,使過P、M兩點(diǎn)的直線與△ABC的兩邊AB、BC的交點(diǎn)E、F和點(diǎn)B所組成的△BEF和△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(1-
3
,0)和點(diǎn)B,將拋物線沿x軸向上翻折,頂點(diǎn)P落在點(diǎn)P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點(diǎn),與它關(guān)于原點(diǎn)對(duì)稱的點(diǎn)也在該拋物線上?若存在,求滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.
(3)學(xué)校舉行班徽設(shè)計(jì)比賽,九年級(jí)(5)班的小明在解答此題時(shí)頓生靈感:過點(diǎn)P′作x軸的平行線交拋物線于C、D兩點(diǎn),將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計(jì)成一個(gè)“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過計(jì)算驚奇的發(fā)現(xiàn)這個(gè)“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請(qǐng)你計(jì)算這個(gè)“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
,
6
≈2.449
,結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)若點(diǎn)M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點(diǎn)M的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出直線l的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA≠OB,OA=OC,設(shè)拋物線的頂點(diǎn)為點(diǎn)P,直線PC與x軸的交點(diǎn)D恰好與點(diǎn)A關(guān)于y軸對(duì)稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點(diǎn)Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點(diǎn)E(不與點(diǎn)C重合),使得以P、A、E為頂點(diǎn)的三角形與△PAC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案