【題目】如圖,矩形DEFG的邊EF在△ABC的邊BC上,頂點D,G分別在邊AB,AC上,AH⊥BC,垂足為H,AH交DG于點P,已知BC=6,AH=4.當矩形DEFG面積最大時,HP的長是( 。
A.1B.2C.3D.4
科目:初中數學 來源: 題型:
【題目】A、B兩地之間有一修理廠C,一日小海和王陸分別從A、B兩地同時出發(fā)相向而行,王陸開車,小海騎摩托.二人相遇時小海的摩托車突然出故障無法前行,王陸決定將小海和摩托車一起送回到修理廠C后再繼續(xù)按原路前行,王陸到達A地后立即返回B地,到B地后不再繼續(xù)前行,等待小海前來(裝載摩托車時間和掉頭時間忽略不計),整個行駛過程中王陸速度不變,而小海在修理廠花了十分鐘修好摩托車,為了趕時間,提速前往目的地B,小海到達B地后也結束行程,若圖象表示的是小海與王陸二人到修理廠C的距離和y(km)與小海出行時間之間x(h)的關系,則當王陸第二次與小海在行駛中相遇時,小海離目的地B還有_____km.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=-x2-bx+c的圖象經過點A,點B(1,0)和點C(0,3).點D是拋物線的頂點.
(1)求二次函數的解析式和點D的坐標
(2)直線y=kx+n(k≠0)與拋物線交于點M,N,當△CMN的面積被y軸平分時,求k和n應滿足的條件
(3)拋物線的對稱軸與x軸交于點E,將拋物線向下平移m(m>0)個單位,平移后拋物線與y軸交于點C′,連接DC′,OD,是否存在OD平分∠C′DE的情況?若存在,求出m的值;若不薦在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,,點是射線上一動點,過點作,垂足為點,交直線于點.
(問題發(fā)現(xiàn))(1)如圖1,若點在的延長線上,試猜想,,之間的數量關系為_______;
(類比探究)(2)如圖2,若點在線段上,試猜想,,之間的數量關系,并說明理由;
(拓展應用)(3)當點為的中點時,直接寫出線段的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】公司以10元/千克的價格收購一批產品進行銷售,經過市場調查獲悉,日銷售量y(千克)是銷售價格x(元/千克)的一次函數,部分數據如表:
銷售價格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日銷售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)直接寫出y與x之間的函數表達式;
(2)求日銷售利潤為150元時的銷售價格;
(3)若公司每銷售1千克產品需另行支出a元(0<a<10)的費用,當20≤x≤25時,公司的日獲利潤的最大值為1215元,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經過A、B兩點,與x軸的另一個交點為C.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的點,連接OP交直線AB于點Q.設點P的橫坐標為m,PQ與OQ的比值為y,求y與m的關系式,并求出PQ與OQ的比值的最大值;
(3)點D是拋物線對稱軸上的一動點,連接OD、CD,設△ODC外接圓的圓心為M,當sin∠ODC的值最大時,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為軸于點,反比例函數的圖像的一支分別交于點,延長交反比例函數的圖像的另一支于點E,已知D的縱坐標為.
(1)求反比例函數的解析式及直線OA的解析式;
(2)連接BC,已知,求
(3)若在軸上有兩點,將直線繞點旋轉,仍與交于,能否構成以為頂點的四邊形為菱形,如果能請求出的值,如果不能說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E是平行四邊形ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求平行四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com