【題目】在平面直角坐標(biāo)系中,我們定義直線yaxa為拋物線yax2+bx+cab、c為常數(shù),a≠0)的夢(mèng)想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢(mèng)想三角形.已知拋物線y=﹣x2x+2與其夢(mèng)想直線交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的夢(mèng)想直線的解析式為   ,點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ;

2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACMAM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的夢(mèng)想三角形,求點(diǎn)N的坐標(biāo);

3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢(mèng)想直線上,是否存在點(diǎn)F,使得以點(diǎn)AC、EF為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(﹣2,);(10);(2N點(diǎn)坐標(biāo)為(03)或(,);(3)存在;E(﹣1,﹣)、F0,)或E(﹣1,﹣)、F(﹣4,).

【解析】

1)由夢(mèng)想直線的定義可求得其解析式,聯(lián)立夢(mèng)想直線與拋物線解析式可求得AB的坐標(biāo);

2)當(dāng)N點(diǎn)在y軸上時(shí),過(guò)AADy軸于點(diǎn)D,則可知ANAC,結(jié)合A點(diǎn)坐標(biāo),則可求得ON的長(zhǎng),可求得N點(diǎn)坐標(biāo);當(dāng)M點(diǎn)在y軸上即,M點(diǎn)在原點(diǎn)時(shí),過(guò)NNPx軸于點(diǎn)P,由條件可求得∠NMP60°,在RtNMP中,可求得MPNP的長(zhǎng),則可求得N點(diǎn)坐標(biāo);

3)當(dāng)AC為平行四邊形的一邊時(shí),過(guò)F作對(duì)稱軸的垂線FH,過(guò)AAKx軸于點(diǎn)K,可證△EFH≌△ACK,可求得DF的長(zhǎng),則可求得F點(diǎn)的橫坐標(biāo),從而可求得F點(diǎn)坐標(biāo),由HE的長(zhǎng)可求得E點(diǎn)坐標(biāo);當(dāng)AC為平行四邊形的對(duì)角線時(shí),設(shè)E(﹣1,t),由A、C的坐標(biāo)可表示出AC中點(diǎn),從而可表示出F點(diǎn)的坐標(biāo),代入直線AB的解析式可求得t的值,可求得E、F的坐標(biāo).

解:(1拋物線,

其夢(mèng)想直線的解析式為

聯(lián)立夢(mèng)想直線與拋物線解析式可得:

解得:

∴A(﹣2,),B1,0),

故答案為:;(﹣2,);(1,0);

2)當(dāng)點(diǎn)Ny軸上時(shí),△AMN為夢(mèng)想三角形,

如圖1,過(guò)AAD⊥y軸于點(diǎn)D,則AD=2,

中,

y=0可求得x=3x=1,

∴C(﹣3,0),且A(﹣2,),

∴AC= =,

由翻折的性質(zhì)可知AN=AC=,

Rt△AND中,由勾股定理可得DN= = =3,

∵OD=,

∴ON=3ON=+3,

當(dāng)ON=+3時(shí),則MNODCM,與MN=CM矛盾,不合題意,

∴N點(diǎn)坐標(biāo)為(0,3);

當(dāng)M點(diǎn)在y軸上時(shí),則MO重合,過(guò)NNP⊥x軸于點(diǎn)P,如圖2,

Rt△AMD中,AD=2,OD=

∴∠DAM=60°

∵AD∥x軸,

∴∠AMC=∠DAO=60°

又由折疊可知∠NMA=∠AMC=60°,

∴∠NMP=60°,且MN=CM=3

∴MP=MN=,NP=MN=,

此時(shí)N點(diǎn)坐標(biāo)為(,);

綜上可知N點(diǎn)坐標(biāo)為(0,3)或(,);

3當(dāng)AC為平行四邊形的邊時(shí),如圖3,過(guò)F作對(duì)稱軸的垂線FH,過(guò)AAK⊥x軸于點(diǎn)K,

則有AC∥EFAC=EF,

∴∠ACK=∠EFH,

△ACK△EFH中,

∵∠ACK=∠EFH,∠AKC=∠EHF,AC=EF,

∴△ACK≌△EFHAAS),

∴FH=CK=1,HE=AK=

拋物線對(duì)稱軸為x=1,

∴F點(diǎn)的橫坐標(biāo)為0或﹣2

點(diǎn)F在直線AB上,

當(dāng)F點(diǎn)橫坐標(biāo)為0時(shí),則F0),此時(shí)點(diǎn)E在直線AB下方,

∴Ey軸的距離為EHOF==,

E點(diǎn)縱坐標(biāo)為﹣,

∴E(﹣1,﹣);

當(dāng)F點(diǎn)的橫坐標(biāo)為﹣2時(shí),則FA重合,不合題意,舍去;

當(dāng)AC為平行四邊形的對(duì)角線時(shí),

∵C(﹣30),且A(﹣2,),

線段AC的中點(diǎn)坐標(biāo)為(﹣2.5,),

設(shè)E(﹣1,t),Fx,y),

x1=2×(﹣2.5),y+t=

∴x=4,y=t,

代入直線AB解析式可得t=×(﹣4+

解得t=,

∴E(﹣1,﹣),F(﹣4,);

綜上可知存在滿足條件的點(diǎn)F,此時(shí)E(﹣1,﹣)、F0,)或E(﹣1,﹣)、F(﹣4,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)進(jìn)校時(shí)需要從學(xué)校大門A、B、C三個(gè)入口處中的任意一處測(cè)量體溫,體溫正常方可進(jìn)校.

1)甲同學(xué)在A入口處測(cè)量體溫的概率是

2)求甲、乙兩位同學(xué)在同一入口處測(cè)量體溫的概率.(用畫樹狀圖列表的方法寫出分析過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中點(diǎn),,以為頂點(diǎn)在第一象限內(nèi)作正方形.反比例函數(shù)、分別經(jīng)過(guò)兩點(diǎn)(1)如圖2,過(guò)兩點(diǎn)分別作、軸的平行線得矩形,現(xiàn)將點(diǎn)沿的圖象向右運(yùn)動(dòng),矩形隨之平移;

試求當(dāng)點(diǎn)落在的圖象上時(shí)點(diǎn)的坐標(biāo)_____________.

設(shè)平移后點(diǎn)的橫坐標(biāo)為,矩形的邊的圖象均無(wú)公共點(diǎn),請(qǐng)直接寫出的取值范圍____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)實(shí)踐小組想利用鏡子的反射測(cè)量池塘邊一棵樹的高度AB.測(cè)量和計(jì)算的部分步驟如下:

①如圖,樹與地面垂直,在地面上的點(diǎn)C處放置一塊鏡子,小明站在BC的延長(zhǎng)線上,當(dāng)小明在鏡子中剛好看到樹的頂點(diǎn)A時(shí),測(cè)得小明到鏡子的距離CD2米,小明的眼睛E到地面的距離ED1.5米;

②將鏡子從點(diǎn)C沿BC的延長(zhǎng)線向后移動(dòng)10米到點(diǎn)F處,小明向后移動(dòng)到點(diǎn)H處時(shí),小明的眼睛G又剛好在鏡子中看到樹的頂點(diǎn)A,這時(shí)測(cè)得小明到鏡子的距離FH3米;

③計(jì)算樹的高度AB;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5G時(shí)代即將來(lái)臨,湖北省提出“建成全國(guó)領(lǐng)先、中部一流5G網(wǎng)絡(luò)”的戰(zhàn)略目標(biāo).據(jù)統(tǒng)計(jì),目前湖北5G基站的數(shù)量有1.5萬(wàn)座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬(wàn)座.

(1)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長(zhǎng)率;

(2)2023年保持前兩年5G基站數(shù)量的年平均增長(zhǎng)率不變,到2023年底,全省5G基站數(shù)量能否超過(guò)29萬(wàn)座?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD2.將∠A向內(nèi)翻折,點(diǎn)A落在BC上,記為A,折痕為DE.若將∠B沿EA向內(nèi)翻折,點(diǎn)B恰好落在DE上,記為B,則AB____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高情況,并繪制了如下不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解決下列問(wèn)題:

(1)求甲、乙兩個(gè)班共有女生多少人?

(2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案