【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)m= , n=;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)會(huì)落在分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?
【答案】
(1)70;0.2
(2)
(3)80≤x<90
(4)解:該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有:
3000×0.25=750(人)
【解析】解:(1)由題可得,m=200×0.35=70;n=40÷200=0.2; 所以答案是:70,0.2;
2)頻數(shù)分布直方圖如圖所示,
3)∵前三組總數(shù)為10+30+40=80,前四組總數(shù)為10+30+40+70=150,而80<100<150,
∴比賽成績(jī)的中位數(shù)會(huì)落在80≤x<90分?jǐn)?shù)段;
所以答案是:80≤x<90;
【考點(diǎn)精析】通過(guò)靈活運(yùn)用頻數(shù)分布直方圖,掌握特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC紙片中,∠ACB=90°,AC=6,BC=8,P是AB邊上一點(diǎn),連接CP.沿CP把Rt△ABC紙片裁開(kāi),要使△ACP是等腰三角形,那么AP的長(zhǎng)度是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把幾個(gè)數(shù)用大括號(hào)括起來(lái),中間用逗號(hào)斷開(kāi),如:{1,2,-3},{-2,7,,19},我們稱(chēng)之為集合,其中的數(shù)稱(chēng)為集合的元素.如果一個(gè)集合滿(mǎn)足:當(dāng)有理數(shù)a是集合的元素時(shí),有理數(shù)5-a也必是這個(gè)集合的元素,這樣的集合我們稱(chēng)為好的集合.例如集合{5,0}就是一個(gè)好的集合.
(1)請(qǐng)你判斷集合{1,2},{-2,1,2.5,4,7}是不是好的集合?
(2)請(qǐng)你再寫(xiě)出兩個(gè)好的集合(不得與上面出現(xiàn)過(guò)的集合重復(fù));
(3)寫(xiě)出所有好的集合中,元素個(gè)數(shù)最少的集合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是中線(xiàn),延長(zhǎng)BC至E,使CE=CD.
(1)求證:DB=DE;
(2)過(guò)點(diǎn)D作DF垂直BE,垂足為F,若CF=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線(xiàn)上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ADC=∠EFC,∠3=∠C,可推得∠1=∠2.理由如下:
解:因?yàn)椤?/span>ADC=∠EFC(已知)
所以AD∥EF( ).
所以∠1=∠4( ),
因?yàn)椤?/span>3=∠C(已知),
所以AC∥DG( ).
所以∠2=∠4( ).
所以∠1=∠2(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2﹣2ax+c(a<0)的圖象與x軸負(fù)半軸交于點(diǎn)A(﹣1,0),與y軸正半軸交于點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)A、B.
(1)求一次函數(shù)解析式;
(2)求頂點(diǎn)P的坐標(biāo);
(3)平移直線(xiàn)AB使其過(guò)點(diǎn)P,如果點(diǎn)M在平移后的直線(xiàn)上,且 ,求點(diǎn)M坐標(biāo);
(4)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于點(diǎn)E,連接AP交y軸于點(diǎn)D,若點(diǎn)Q、N分別為兩線(xiàn)段PE、PD上的動(dòng)點(diǎn),連接QD、QN,請(qǐng)直接寫(xiě)出QD+QN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為斜邊作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分別是BC、AC的中點(diǎn),則∠EDF等于°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,點(diǎn)E在劣弧AD上,則∠BEC等于( )
A.45°
B.60°
C.30°
D.55°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com