【題目】為了配合“八榮八恥”宣傳教育,針對闖紅燈的現(xiàn)象時有發(fā)生的實際情況,八年級某班開展一次題為“紅燈與綠燈”的課題學(xué)習(xí)活動,它們將全班學(xué)生分成8個小組,其中第①~⑥組分別負責(zé)早.中.晚三個時段闖紅燈違章現(xiàn)象的調(diào)查,第⑦小組負責(zé)查閱有關(guān)紅綠燈的交通法規(guī),第⑧小組負責(zé)收集有關(guān)的交通標志. 數(shù)據(jù)匯總?cè)缦拢?/span>
部分時段車流量情況調(diào)查表
時間 | 負責(zé)組別 | 車流總量 | 每分鐘車流量 |
早晨上學(xué)6:30~7:00 | ①② | 2747 | 92 |
中午放學(xué)11:20~11:50 | ③④ | 1449 | 48 |
下午放學(xué)5:00~5:30 | ⑤⑥ | 3669 | 122 |
回答下列問題:
(1)請你寫出2條交通法規(guī).
(2)早晨.中午.晚上三個時段每分鐘車流量的極差是多少,這三個時段的車流總量的中位數(shù)是多少.
(3)觀察表中的數(shù)據(jù)及條形統(tǒng)計圖,寫出你發(fā)現(xiàn)的一個現(xiàn)象并分析其產(chǎn)生的原因.
(4)通過分析寫一條合理化建議.
【答案】(1)如:紅燈停.綠燈行;過馬路要走人行橫道線;不可酒后駕車等;(2)74; 2747;(3)現(xiàn)象:如行人違章率最高,汽車違章率低,原因見解析;(4)建議:如廣泛宣傳交通法規(guī);增加值勤警力等.
【解析】
本題具有一定的開放性;對于:(1)(3)(4)開放性較強,只要符合題意即可;(2)將三個時段的車流總量由小到大排列1449、2747、3669,則中位數(shù)為2747;極差是指一組據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差.
(1)如:紅燈停.綠燈行;過馬路要走人行橫道線;不可酒后駕車等.
(2)三個時段每分鐘車流量的極差=122-48=74,這三個時段的車流總量的中位數(shù)是2747;
(3)現(xiàn)象:如行人違章率最高,汽車違章率低,原因是汽車駕駛員是經(jīng)過專門培訓(xùn)過的,行人存在圖方便的心理等.
(4)建議:如廣泛宣傳交通法規(guī);增加值勤警力等.(要求建議要合理)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D,E是邊AB上兩點,且CE所在直線垂直平分線段AD,CD平分∠BCE,AC=5cm,則BD的長為( )
A. 5cm B. 6cm C. 7cm D. 8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形 ABCD 中,BC=CD,連接 AC、BD,∠ADB=90°.
(1)如圖 1,若 AD=BD=BC,過點 D 作 DF⊥AB 于點 F,交 AC 于點 E:
①求∠DAC;
②猜想 AE、DE、CE 的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖 2,若 AC=BD,求∠DAC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師在黑板上寫了一道題:如圖1,線段AB=CD,AB與CD相交于點O,且∠AOC=60°,試比較AC+BD與AB的大小.小聰思考片刻就想出來了,他說將AB平移到CE位置,如圖2,連接BE,DE,就可以比較AC+BD與AB的大小了,你知道他是怎樣比較的嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a=bB.a=3bC.a=bD.a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形OABC,O為平面直角坐標系的原點,OA=5,OC=3,點B在第三象限.
(1)求點B的坐標;
(2)如圖,若過點B的直線BP與長方形OABC的邊交于點P,且將長方形OABC的面積分為1:4兩部分,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=﹣3是關(guān)于x的方程(k+3)x+2=3x﹣2k的解.
(1)求k的值;
(2)在(1)的條件下,已知線段AB=6cm,點C是直線AB上一點,且BC=kAC,若點D是AC的中點,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】∠AOB內(nèi)部有一點P,∠AOB=60°.
(1)過點P畫PC∥OB,交OA于點C;
(2)過點P畫PD⊥OB,交OB于點D,交OA于點E;
(3)過點C畫直線OB的垂線段CF;
(4)根據(jù)所畫圖形,∠ACF= 度,∠OED= 度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com