【題目】如圖, 在平面直角坐標系xOy中,三角形ABC三個頂點的坐標分別為(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 個單位長度,再向左平移 個單位長度得到三角形 ,點A,B,C的對應點分別為 ,,.

(1)寫出點 , 的坐標;

(2)在圖中畫出平移后的三角形 ;

(3)三角形 的面積為__________

【答案】(1)A′的坐標為(-3,01)、點B′的坐標為(2,4),C′的坐標為(-1,5);(2)作圖見解析;(3)7.

【解析】(1)根據(jù)橫坐標,右移加,左移減;縱坐標,上移加,下移減即可得;

(2)順次連接,即可得三角形;

(3)利用割補法,用長方形的面積減去外三個三角形的面積可得.

1)∵點A的坐標為(-2,-2)、點B的坐標為(3,1),C的坐標為(0,2),

∴向上平移3個單位長度,再向左平移1個單位長度后點的坐標為(-3,01)、點的坐標為(2,4),的坐標為(-1,5);

(2)平移后的圖形如圖所示.

(3)三角形的面積=5×47.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學完二次根式一章后,小易同學看到這樣一題:“函數(shù)中,自變量的取值范圍是什么?”這個問題很簡單,根據(jù)二次根式的性質很容易得到自變量的取值范圍.聯(lián)想到一次函數(shù),小易想進一步研究這個函數(shù)的圖象和性質.以下是他的研究步驟:

第一步:函數(shù)中,自變量的取值范圍是_____________.

第二步:根據(jù)自變量取值范圍列表:

-1

0

1

2

3

4

0

1

2

__________.

第三步:描點畫出函數(shù)圖象.

在描點的時候,遇到了這樣的點,小易同學用所學勾股定理的知識,找到了畫圖方法,如圖所示:

你能否從中得到啟發(fā),在下面的軸上標出表示 、、的點,并畫出的函數(shù)圖象.

第四步:分析函數(shù)的性質.

請寫出你發(fā)現(xiàn)的函數(shù)的性質(至少寫兩條):

____________________________________________________________________________________________

____________________________________________________________________________________________

第五步:利用函數(shù)圖象解含二次根式的方程和不等式.

1)請在上面坐標系中畫出的圖象,并估算方程的解.

2)不等式的解是__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個10×10網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.

(1)畫出△ABC關于直線l的對稱的△A1B1C1

(2)畫出△ABC關于點P的中心對稱圖形△A2B2C2

(3)△A1B1C1與△A2B2C2組成的圖形_______________(是或否)軸對稱圖形,如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉一定角度后得到△ABE,

AF=4,AB=7.

(1)旋轉中心為______;旋轉角度為______;

(2)DE的長度為______;

(3)指出BEDF的位置關系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BEAD于點FAB=6cm,AD=8cm.

1)求證:BDF是等腰三角形;

2)如圖2,過點DDGBE,交BC于點G,連結FGBD于點O.判斷四邊形FBGD的形狀,并說明理由.

3)在(2)的條件下,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙內將ABC經(jīng)過一次平移后得到A′B′C′,圖中標出了點C的對應點C′.(利用網(wǎng)格點和三角板畫圖)

(1)畫出平移后的A′B′C′.

(2)畫出AB邊上的中線線CD;

(3)在整個平移過程中,線段BC掃過的面積是___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖矩形ABCD中,AB=3cm,AD=9cm,將此矩形折疊,使點B與點D重合,折痕為EF.

(1)求證:BE=BF;

(2)求ABE的面積;

(3)求折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,如圖∠BAC90°,BD平分∠ABC,點EBC上,DEAB,點FBC上,連結AF,∠C36°.

1)求∠BDE的度數(shù);

2)若∠BAF∶∠CAF23,求證:AFBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=8厘米,BC=6厘米,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿AB方向運動速度為1厘米/秒,點Q從點B開始沿BCA方向運動速度為2厘米/秒,若它們同時出發(fā),設出發(fā)的時間為t秒.

1)求出發(fā)2秒后,PQ的長;

2)點QCA邊上運動時,當△BCQ成為等腰三角形時,求點Q的運動時間.

查看答案和解析>>

同步練習冊答案