【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設(shè)△ACD、△BCE、△ABC的面積分別是S1、S2、S3 , 現(xiàn)有如下結(jié)論:
①S1:S2=AC2:BC2;
②連接AE,BD,則△BCD≌△ECA;
③若AC⊥BC,則S1S2= S32
其中結(jié)論正確的序號是

【答案】①②③
【解析】①S1:S2=AC2:BC2正確,
解:∵△ADC與△BCE是等邊三角形,
∴△ADC∽△BCE,
∴S1:S2=AC2:BC2
②△BCD≌△ECA正確,
證明:∵△ADC與△BCE是等邊三角形,
∴∠ACD=∠BCE=60°
∴∠ACD+∠ACB=∠BCE+∠ACD,
即∠ACE=∠DCB,
在△ACE與△DCB中,
,
∴△BCD≌△ECA(SAS).
③若AC⊥BC,則S1S2= S32正確,
解:設(shè)等邊三角形ADC的邊長=a,等邊三角形BCE邊長=b,則△ADC的高= a,△BCE的高= b,
∴S1= a a= a2 , S2= b b= b2 ,
∴S1S2= a2 b2= a2b2
∵S3= ab,
∴S32= a2b2 ,
∴S1S2= S32
【考點精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個角都相等并且每個角都是60°才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式Ax2+3xyx,B=2x2xy+4y-1

(1)xy=-2時,求2AB的值;

(2)2AB的值與y的取值無關(guān),求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(概念學習)

規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2等.類比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方”,一般地,把(a≠0)記作a,讀作“a的圈n次方”.

(初步探究)

(1)直接寫出計算結(jié)果:2=_____,(﹣=_____

(2)關(guān)于除方,下列說法準確的選項有_________(只需填入正確的序號)

①.任何非零數(shù)的圈2次方都等于1; .對于任何正整數(shù)n,1=1;

.3=4 .負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).

(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

例如: 2=2÷2÷2÷2

=2×××

=__2 (冪的形式)

試一試:將下列除方運算直接寫成冪的形式.

5=_____;(﹣)=_____;a=_____(a≠0).

算一算:÷23+(﹣8)×2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)y=2x和函數(shù)y=的圖象交于A、B兩點,過點A作AEx軸于點E,若AOE的面積為4,P是坐標平面上的點,且以點B、O、E、P為頂點的四邊形是平行四邊形,則k= ,滿足條件的P點坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BD⊥AC,AB=6,AC=5 ,∠A=30°.
①求BD和AD的長;
②求tanC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQ⊥AB的延長線于點Q.
(1)求線段PQ的長;
(2)問:點P在何處時,△PFD∽△BFP,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y= 的圖象過點A(1,2).
(1)求該函數(shù)的解析式;
(2)過點A分別向x軸和y軸作垂線,垂足為B和C,求四邊形ABOC的面積;
(3)求證:過此函數(shù)圖象上任意一點分別向x軸和y軸作垂線,這兩條垂線與兩坐標軸所圍成矩形的面積為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6.

(1)求函數(shù)y=和y=kx+b的解析式;

(2)已知直線AB與x軸相交于點C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點P,使得S△POC=9.

查看答案和解析>>

同步練習冊答案