【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,E是CD的中點,連接OE.過點C作CF∥BD交線段OE的延長線于點F,連接DF.
求證:(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據兩直線平行,內錯角相等可得∠ODE=∠FCE,根據線段中點的定義可得CE=DE,然后利用“角邊角”證明△ODE和△FCE全等;
(2)根據全等三角形對應邊相等可得OD=FC,再根據一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形ODFC是平行四邊形,根據矩形的對角線互相平分且相等可得OC=OD,然后根據鄰邊相等的平行四邊形是菱形證明即可.
(1)∵CF∥BD,∴∠ODE=∠FCE.
∵E是CD中點,∴CE=DE.在△ODE和△FCE中,∵,∴△ODE≌△FCE(ASA);
(2)∵△ODE≌△FCE,∴OD=FC.
∵CF∥BD,∴四邊形ODFC是平行四邊形,在矩形ABCD中,OC=OD,∴四邊形ODFC是菱形.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形材料,高線AH長8 cm,底邊BC長10 cm,要把它加工成一個矩形零件,使矩形DEFG的一邊EF在BC上,其余兩個頂點D,G分別在AB,AC上,則四邊形DEFG的最大面積為( )
A. 40 cm2 B. 20 cm2
C. 25 cm2 D. 10 cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象的頂點坐標為,直線與該二次函數的圖象交于,兩點,其中點的坐標為,點在軸上.是軸上的一個動點,過點作軸的垂線分別與直線和二次函數的圖象交于,兩點.
(1)求的值及這個二次函數的解析式;
(2)若點的橫坐標,求的面積;
(3)當時,求線段的最大值;
(4)若直線與二次函數圖象的對稱軸交點為,問是否存在點,使以,,,為頂點的四邊形是平行四邊形?若存在,請求出此時點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,∠ACB=45°,AE⊥BC于點E,過點C作CF⊥AB于點F,交AE于點M.點N在邊BC上,且AM=CN,連結DN.
(1)若AB=,AC=4,求BC的長;
(2)求證:AD+AM=DN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c交x軸于A、B兩點,OA=1,OB=3,拋物線的頂點坐標為D(1,4).
(1)求A、B兩點的坐標;
(2)求拋物線的表達式;
(3)過點D做直線DE//y軸,交x軸于點E,點P是拋物線上A、D兩點間的一個動點(點P不于A、D兩點重合),PA、PB與直線DE分別交于點G、F,當點P運動時,EF+EG的值是否變化,如不變,試求出該值;若變化,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解學生的藝術特長發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內隨機抽取部分學生進行問卷調查,并將調查結果繪制成如下兩幅不完整的統計圖.
請你根據統計圖解答下列問題:
(1)扇形統計圖中“戲曲”部分對應的扇形的圓心角為 度;
(2)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列舉法求恰好選中“舞蹈、聲樂”這兩項的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點,過點P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長的最大值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線.
(1)求拋物線的對稱軸;
(2)當時,設拋物線與軸交于兩點(點在點左側),頂點為,若為等邊三角形,求的值;
(3)過(其中)且垂直軸的直線與拋物線交于兩點.若對于滿足條件的任意值,線段的長都不小于1,結合函數圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一只不透明的袋子中裝有個質地、大小均相同的小球,這些小球分別標有數字,甲、乙兩人每次同時從袋中各隨機摸出個球,并計算摸出的這個小球上數字之和,記錄后都將小球放回袋中攪勻,進行重復實驗.實驗數據如下表
摸球總次數 | ||||||||||
“和為”出現的頻數 | ||||||||||
“和為”出現的頻率 |
解答下列問題:
如果實驗繼續(xù)進行下去,根據上表數據,出現“和為”的頻率將穩(wěn)定在它的概率附近.估計出現“和為”的概率是_______;
如果摸出的這兩個小球上數字之和為的概率是,那么的值可以取嗎?請用列表法或畫樹狀圖法說明理由;如果的值不可以取,請寫出一個符合要求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com