【題目】如圖,已知中,,,,;

請說明的理由;

可以經(jīng)過圖形的變換得到,請你描述這個變換;

的度數(shù).

【答案】(1);(2)繞點順時針旋轉,可以得到;(3)

【解析】

1)先利用已知條件∠B=E,AB=AE,BC=EF,利用SAS可證ABC≌△AEF,那么就有∠C=F,BAC=EAF,那么∠BAC-PAF=EAF-PAF,即有∠BAE=CAF=25°;
(2)通過觀察可知ABC繞點A順時針旋轉25°,可以得到AEF;
(3)由(1)知∠C=F=57°,BAE=CAF=25°,而∠AMBACM的外角,根據(jù)三角形外角的性質可求∠AMB.

解:,,

,

,,

;

通過觀察可知繞點順時針旋轉,可以得到;

,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角三角形ABC中,O為三條邊的垂直平分線的交點,I為三個角的平分線的交點,若∠BOC的度為x,∠BIC的度數(shù)為y,則x、y之間的數(shù)量關系是(  )

A.x+y90°B.x2y90°C.x+180°2yD.4yx360°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系.請根據(jù)圖象解答下列問題:

1)當轎車剛到乙地時,此時貨車距離乙地   千米;

2)當轎車與貨車相遇時,求此時x的值;

3)在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示第個圖案是由黑白兩種顏色的正六邊形地面磚組成,第個,第個圖案可以看作是第個圖案經(jīng)過平移而得,那么第個圖案中有白色地面磚________塊,第個圖案中有白色地面磚的塊數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】節(jié)能環(huán)保的油電混合動力汽車,既可用油做動力行駛,也可用電做動力行駛,某品牌油電混合動力汽車從甲地行駛到乙地,若完全用油做動力行駛,則費用為80元;若完全用電做動力行駛,則費用為30元,已知汽車行駛中每千米用油費用比用電費用多0.5.

(1)求汽車行駛中每千米用電費用是多少元?

(2)甲、乙兩地的距離是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,等邊三角形AEF的頂點E、F分別在BCCD上.

1)求證:CE=CF;

2)若等邊三角形AEF的邊長為2,求正方形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學手中各有分別標注,三個數(shù)字的紙牌,甲制定了游戲規(guī)則:兩人同時各出一張牌,當兩紙牌上的數(shù)字之和為偶數(shù)時甲贏,奇數(shù)時乙贏.你認為此規(guī)則公平嗎?并說明理由.________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明想測山高和索道的長度.他在處仰望山頂,測得仰角,再往山的方向(水平方向)前進至索道口處,沿索道方向仰望山頂,測得仰角

求這座山的高度(小明的身高忽略不計);

求索道的長(結果精確到).

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大學生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.

(1)請直接寫出yx之間的函數(shù)關系式;

(2)如果每天獲得160元的利潤,銷售單價為多少元?

(3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案