【題目】如圖,某生在旗桿EF與實驗樓CD之間的A處,測得∠EAF=60°,然后向左移動12米到B處,測得∠EBF=30°,∠CBD=45°,sin∠CAD= .
(1)求旗桿EF的高;
(2)求旗桿EF與實驗樓CD之間的水平距離DF的長.
【答案】
(1)解:∵∠EAF=60°,∠EBF=30°,
∴∠BEA=30°=∠EBF,
∴AB=AE=12米,
在△AEF中,EF=AE×sin∠EAF=12×sin60°=6 米,
答:旗桿EF的高為6 米;
(2)解:設(shè)CD=x米,
∵∠CBD=45°,∠D=90°,
∴BD=CD=x米,
∵sin∠CAD= ,
∴tan∠CAD= = ,
∴ ,
解得:x=36米,
在△AEF中,∠AEF=60°﹣30°=30°,
∴AF= AE=6米,
∴DF=BD+AB+AF=36+12+6=54(米),
答:旗桿EF與實驗樓CD之間的水平距離DF的長為54米.
【解析】(1)汽車∠BEA=30°=∠EBF,得出AB=AE=12米,在△AEF中,由三角函數(shù)汽車EF即可;(2)設(shè)CD=x米,證出BD=CD=x米,由三角函數(shù)得出方程,解方程求出x,再求出AF,即可得出結(jié)果.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機(jī)抽取三個月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 = x+ 中斜率和截距的最小二乘估計公式分別為:
= , = ﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 為參數(shù)),A,B是C上的動點(diǎn),且滿足OA⊥OB(O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)D的極坐標(biāo)為 .
(1)求線段AD的中點(diǎn)M的軌跡E的普通方程;
(2)利用橢圓C的極坐標(biāo)方程證明 為定值,并求△AOB的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)住宅用電之電費(fèi)計算規(guī)則如下:每月每戶不超過50度時,每度以4元收費(fèi);超過50度的部分,每度以5元收費(fèi),并規(guī)定用電按整數(shù)度計算(小數(shù)部份無條件舍去) .
(1)下表給出了今年3月份A,B兩用戶的部分用電數(shù)據(jù),請將表格數(shù)據(jù)補(bǔ)充完整,
電量(度) | 電費(fèi)(元) | |
A | 240 | |
B | ||
合計 | 90 |
(2)若假定某月份C用戶比D用戶多繳電費(fèi)38元,求C用戶該月可能繳的電費(fèi)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,點(diǎn)O在格點(diǎn)上,⊙O的半徑與小正方形的邊長相等,請利用無刻度的直尺完成作圖,在圖(1)中畫出一個45°的圓周角,在圖(2)中畫出一個22.5°的圓周角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=4 ,點(diǎn)C為半圓AB上一動點(diǎn),以BC為邊向⊙O外作正△BCD(點(diǎn)D在直線AB的上方),連接OD,則線段OD的長( )
A.隨點(diǎn)C的運(yùn)動而變化,最大值為4
B.隨點(diǎn)C的運(yùn)動而變化,最大值為4
C.隨點(diǎn)C的運(yùn)動而變化,最小值為2
D.隨點(diǎn)C的運(yùn)動而變化,但無最值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=kx(k<0),將直線y=kx沿y軸向下平移m(m>0)個單位得到直線y=kx﹣m,平移后的直線與拋物線y=ax2相交于A(x1 , y1),B(x2 , y2)兩點(diǎn),拋物線y=ax2經(jīng)過點(diǎn)P(6,﹣9).
(1)求a的值;
(2)如圖1,當(dāng)∠AOB<90°時,求m的取值范圍;
(3)如圖2,將拋物線y=ax2向右平移一個單位,再向上平移n個單位(n>0).若第一象限的拋物線上存在點(diǎn)M,N兩點(diǎn),且M,N兩點(diǎn)關(guān)于直線y=x軸對稱,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了鼓勵市民節(jié)約用水,計劃實行生活用水按階梯式水價計費(fèi),每月用水量不超過10噸(含10噸)時,每噸按基礎(chǔ)價收費(fèi);每月用水量超過10噸時,超過的部分每噸按調(diào)節(jié)價收費(fèi).例如,第一個月用水16噸,需交水費(fèi)17.8元,第二個月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價和調(diào)節(jié)價
(2)設(shè)每月用水量為n噸,應(yīng)交水費(fèi)為m元,寫出m與n之間的函數(shù)解析式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力.增強(qiáng)保護(hù)漢字的意識,我區(qū)舉辦了“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 6 |
第3組 | 35≤x<40 | 14 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com