【題目】成都和西安兩地之間的鐵路交通設有高鐵列車和普快列車兩種車次,某天一輛普快從西安出發(fā)勻速駛向成都,同時另一輛高鐵從成都出發(fā)勻速駛向西安,兩車與成都的距離(千米)與行駛時間t(時)之間的關系如圖所示.
t | 0 | 1 | 2 | 4 | … |
S1 | 666 | 546 | 426 | 186 | … |
(1)西安與成都的距離為______千米,普通快車到達成都所用時間為_______小時;
(2)求高鐵從成都到西安的距離與之間的關系式;
(3)在成都、西安兩地之間有一條隧道,高鐵經過這條隧道時,兩車相距74千米,求西安與這條隧道之間的距離.
【答案】(1)666; 5.55;(2);(3)西安與這條隧道之間的距離266km或166km.
【解析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可以解答本題;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得S2與t之間的關系式;
(3)根據(jù)題意和分類討論的數(shù)學方法可以解答本題.
(1)由表格中的數(shù)據(jù)可得,
西安與成都的距離為666千米,普通快車到達成都所用時間為:666÷(666-546)=5.55小時,
故答案為:666,5.55;
(2)設高鐵從成都到西安的距離S2與t之間的關系式為:S2=kt,
300=1.2k,得k=250,
即高鐵從成都到西安的距離S2與t之間的關系式為S2=250t;
(3)當普快在隧道和西安之間時,設此時為t1,
[300÷1.2+(666-546)]×t1=666-74,
解得,t1=1.6,
則西安與這條隧道之間的距離是(666-546)×1.6+74=266(千米);
當普快在成都和隧道之間時,設此時為t2,
[300÷1.2+(666-546)]×t2=666+74,
解得,t2=2,
則西安與這條隧道之間的距離是(666-546)×2-74=166(千米);
由上可得,西安與這條隧道之間的距離是266千米或166千米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,點D為AC邊上的動點,點D從點C出發(fā),沿邊CA向點A運動,當運動到點A時停止,若設點D運動的時間為t秒.點D運動的速度為每秒1個單位長度.
(1)當t=2時,CD= , AD= ;
(2)求當t為何值時,△CBD是直角三角形,說明理由;
(3)求當t為何值時,△CBD是以BD或CD為底的等腰三角形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)請你畫出函數(shù)y=x2-4x+10的圖象,由圖象你能發(fā)現(xiàn)這個函數(shù)具有哪些性質?
(2)通過配方變形,說出函數(shù)y=-2x2+8x-8的圖象的開口方向、對稱軸、頂點坐標,這個函數(shù)有最大值還是最小值?這個值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖AB=CD,AD=BC,過O點的直線交AD于E,交BC于F,圖中全等三角形有( )
A. 4對 B. 5對 C. 6對 D. 7對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.
(1)當把△ADE繞A點旋轉到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;
(2)當△ADE繞A點旋轉到圖3的位置時,△AMN是否還是等邊三角形?若是請給出證明,
(3)在(2)的條件下,求出當AB=2AD時,△ADE與△ABC及△AMN的面積之比S△ADE∶S△ABC∶ S△AMN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知∠AOB和一條定長線段a,在∠AOB內找一點P,使點P到OA,OB的距離都等于a,作法如下:
①在∠AOB內作OB的垂線段NH,使NH=a,H為垂足;②過N作NM∥OB;③作∠AOB的平分線OP,與NM交于點P;④點P即為所求.其中③的依據(jù)是( )
A. 平行線之間的距離處處相等 B. 角的內部到角的兩邊的距離相等的點在角的平分線上
C. 角的平分線上的點到角的兩邊的距離相等 D. 線段垂直平分線上的點到線段兩端點的距離相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時針旋轉一定角度后與△ADE重合,且點C恰好成為AD的中點.
(1)指出旋轉中心,并求出旋轉的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,垂足分別為E、F,且AB=CD.
(1)△ABF與△CDE全等嗎?為什么?
(2)求證:EG=FG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在小正方形組成的的網格紙中,四邊形ABCD和四邊形A2B2C2D2的位置如圖所示.
(1)現(xiàn)把四邊形ABCD繞C點按順時針方向旋轉90°,畫出相應的圖形A1B1C1D1,
(2)若四邊形A1B1C1D1平移后,與四邊形A2B2C2D2成軸對稱,寫出滿足要求的一種平移方法,并畫出平移后的圖形A3B3C3D3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com