【題目】如圖,四邊形是正方形,點(diǎn)、分別是、上的點(diǎn),且,連接、交于點(diǎn).
(1)如圖①,判斷和之間的數(shù)量關(guān)系和位置關(guān)系,并證明;
(2)如圖②,連接,點(diǎn)是中點(diǎn),若,,求線段的長度;
(3)如圖③,作于點(diǎn),若,求證:點(diǎn)是中點(diǎn).
【答案】(1),,證明見解析;(2);(3)見解析.
【解析】
(1)先根據(jù)正方形的性質(zhì)可得,,再根據(jù)三角形全等的判定定理與性質(zhì)可得,,然后根據(jù)等量代換、三角形的內(nèi)角和定理可得,由此即可得;
(2)先根據(jù)三角形全等的性質(zhì)、正方形的性質(zhì)求出,再根據(jù)勾股定理可求出,然后結(jié)論(1)的結(jié)論,利用直角三角形的性質(zhì)即可得;
(3)先根據(jù)相似三角形的判定與性質(zhì)得出,再根據(jù)相似三角形的性質(zhì)可得,從而可得,即可得出,然后由(1)已證出,最后根據(jù)等量代換可得,即得證.
(1),,證明如下:
∵四邊形是正方形
∴,
∵
∴
∴,
∵
∴
∴
∴;
(2)由(1)已證:
∵,
∵四邊形是正方形
∴
在中,由勾股定理得:
由(1)已證:
是直角三角形
在中,,點(diǎn)是中點(diǎn)
∴;
(3)∵
∴
又
∴
∴
∵
∴,即
∴
∴
又∵
∴
∴點(diǎn)是中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B、C、D均在格點(diǎn)上.點(diǎn)E為直線CD上的動(dòng)點(diǎn),連接BE,作AF⊥BE于F.點(diǎn)P為BC邊上的動(dòng)點(diǎn),連接DP和PF.
(Ⅰ)當(dāng)點(diǎn)E為CD邊的中點(diǎn)時(shí),△ABF的面積為 ;
(Ⅱ)當(dāng)DP+PF最短時(shí),請(qǐng)?jiān)趫D2所示的網(wǎng)格中,用無刻度的直尺畫出點(diǎn)P,并簡(jiǎn)要說明點(diǎn)P的位置是如何找到的(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表中給出,,三種手機(jī)通話的收費(fèi)方式.
收費(fèi)方式 | 月通話費(fèi)/元 | 包時(shí)通話時(shí)間/ | 超時(shí)費(fèi)/(元/) |
不限時(shí) |
(1)設(shè)月通話時(shí)間為小時(shí),則方案,,的收費(fèi)金額,,都是的函數(shù),請(qǐng)分別求出這三個(gè)函數(shù)解析式.
(2)填空:
若選擇方式最省錢,則月通話時(shí)間的取值范圍為______;
若選擇方式最省錢,則月通話時(shí)間的取值范圍為______;
若選擇方式最省錢,則月通話時(shí)間的取值范圍為______;
(3)小王、小張今年月份通話費(fèi)均為元,但小王比小張通話時(shí)間長,求小王該月的通話時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)要修建一個(gè)地下停車場(chǎng),停車場(chǎng)的入口設(shè)計(jì)示意圖如圖所示,其中斜坡的傾斜角為18°,一樓到地下停車場(chǎng)地面的距離CD=2.8米,一樓到地平線的距離BC=1米.
(1)為保證斜坡的傾斜角為18°,應(yīng)在地面上距點(diǎn)B多遠(yuǎn)的A處開始斜坡的施工?(結(jié)果精確到0.1米)
(2)如果給該商場(chǎng)送貨的貨車高度為2.5米,那么按這樣的設(shè)計(jì)能否保證貨車順利進(jìn)入地下停車場(chǎng)?請(qǐng)說明理由.(參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,.點(diǎn)在上,連接,折疊矩形,點(diǎn)與點(diǎn)都恰好落在上的點(diǎn)處,折痕是、、的對(duì)應(yīng)線段與交于點(diǎn),則線段的長度是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)在格點(diǎn)上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實(shí)線表示,按步驟完成下列問題:
(1)將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段;
(2)畫邊的中點(diǎn);
(3)連接并延長交于點(diǎn),直接寫出的值;
(4)在上畫點(diǎn),連接,使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】松立商店準(zhǔn)備從永波機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售,若甲種零件的進(jìn)價(jià)是乙種零件進(jìn)價(jià)的,用1600元單獨(dú)購進(jìn)一種零件時(shí),購進(jìn)甲種零件的數(shù)量比乙種零件多4件.
(1)求每個(gè)甲種零件,每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)松立商店購進(jìn)甲、乙兩種零件共102個(gè),準(zhǔn)備將零件批發(fā)給零售商.甲種零件的批發(fā)價(jià)是100元,乙種零件的批發(fā)價(jià)是130元,松立商店計(jì)劃從零售商處的獲利超過2284元,通過計(jì)算求出松立商店最多給零售商批發(fā)多少個(gè)甲種零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了調(diào)查學(xué)生對(duì)衛(wèi)生健康知識(shí),特別是疫情防控下的衛(wèi)生常識(shí)的了解,現(xiàn)從九年級(jí)名學(xué)生中隨機(jī)抽取了部分學(xué)生參加測(cè)試,并根據(jù)測(cè)試成績(jī)繪制了如下頻數(shù)分布表和扇形統(tǒng)計(jì)圖(尚不完整).
組別 | 成績(jī)/分 | 人數(shù) |
第組 | ||
第組 | ||
第組 | ||
第組 | ||
第組 |
請(qǐng)結(jié)合圖表信息完成下列各題.
(1)表中a的值為_____,b的值為______;在扇形統(tǒng)計(jì)圖中,第組所在扇形的圓心角度數(shù)為______°;
(2)若測(cè)試成績(jī)不低于分為優(yōu)秀,請(qǐng)你估計(jì)從該校九年級(jí)學(xué)生中隨機(jī)抽查一個(gè)學(xué)生,成績(jī)?yōu)閮?yōu)秀的概率.
(3)若測(cè)試成績(jī)?cè)?/span>分以上(含分)均為合格,其他為不合格,請(qǐng)你估計(jì)該校九年級(jí)學(xué)生中成績(jī)不合格的有多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com