【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)在格點(diǎn)上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實(shí)線表示,按步驟完成下列問題:
(1)將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段;
(2)畫邊的中點(diǎn);
(3)連接并延長交于點(diǎn),直接寫出的值;
(4)在上畫點(diǎn),連接,使.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品每天的銷售利潤y(元)與銷售單價(jià)x(元)之間滿足關(guān)系:y=ax2+bx-75.其圖象如圖所示.
⑴a= ;b= ;
⑵銷售單價(jià)為多少元時(shí),該種商品每天的銷售利潤最大?最大利潤為多少元?
⑶由圖象可知,銷售單價(jià)x在 時(shí),該種商品每天的銷售利潤不低于16元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根是另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程x2+2x﹣8=0是倍根方程;
②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.
上述結(jié)論中正確的有( )
A. ①② B. ③④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,點(diǎn)、分別是、上的點(diǎn),且,連接、交于點(diǎn).
(1)如圖①,判斷和之間的數(shù)量關(guān)系和位置關(guān)系,并證明;
(2)如圖②,連接,點(diǎn)是中點(diǎn),若,,求線段的長度;
(3)如圖③,作于點(diǎn),若,求證:點(diǎn)是中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家去上學(xué),先步行一段路,因時(shí)間緊,他改騎共享單車,結(jié)果到學(xué)校時(shí)遲到了7min,其行駛的路程(單位:)與時(shí)間(單位:)的關(guān)系如圖.若他出門時(shí)直接騎共享單車(兩次騎車速度相同),則下列說法正確的是( )
A.小明會遲到2min到校B.小明剛好按時(shí)到校
C.小明可以提前1min到校D.小明可以提前2min到校
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“半日走遍江淮大地,安徽風(fēng)景盡在徽園”,位于省會合肥的徽園景點(diǎn)某年三月共接待游客萬人,四月比三月旅游人數(shù)增加了,五月比四月游客人數(shù)增加了,已知三月至五月徽園的游客人數(shù)平均月增長率為,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在環(huán)形跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離(單位:)與乙出發(fā)的時(shí)間(單位:)之間的關(guān)系如圖所示,下列說法:①甲的速度為;②乙的速度為;③乙出發(fā)時(shí)甲、乙兩人之間的距離為;④甲到達(dá)終點(diǎn)時(shí)乙在終點(diǎn)休息了;⑤,其中的正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于兩個(gè)點(diǎn),和圖形,如果在圖形上存在點(diǎn),(,可以重合),使得,那么稱點(diǎn)與點(diǎn)是圖形的一對“倍點(diǎn)”.已知⊙O的半徑為,點(diǎn).
(1)①點(diǎn)到⊙O的最大值是_______,最小值是_______;
②在,,這兩個(gè)點(diǎn)中,與點(diǎn)是⊙O的一對“倍點(diǎn)”的是_______;
(2)在直線上存在點(diǎn)與點(diǎn)是⊙O的一對“倍點(diǎn)”,求的取值范圍;
(3)已知直線,與軸、軸分別交于點(diǎn)的,,若線段(含端點(diǎn),)上所有點(diǎn)與點(diǎn)都是⊙O的一對“倍點(diǎn)”,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)y=(ax-1)(x-a),其中a是常數(shù),且a≠0.
(1)當(dāng)a=2時(shí),試判斷點(diǎn)(-,-5)是否在該函數(shù)圖象上.
(2)若函數(shù)的圖象經(jīng)過點(diǎn)(1,-4),求該函數(shù)的表達(dá)式.
(3)當(dāng)-1≤x≤+1時(shí),y隨x的增大而減小,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com