【題目】如圖,一束光線從點O射出,照在經(jīng)過A1,0)、B0,1)的鏡面上的點C,經(jīng)AB反射后,又照到豎立在y軸位置的鏡面上的D點,最后經(jīng)y軸再反射的光線恰好經(jīng)過點A,則點C的坐標為______

【答案】

【解析】

應先作出點O及點A的像,過兩個像的直線與直線AB的交點即為所求點.

解:如下圖所示:

設點O關于AB的對稱點是',

在直線AB上,

,

解得k=-1,

直線AB的解析式是y=-x+1

O和直線AB同時向下平移一個單位,得到點,直線A1B1 y=-x,

則點關于直線A1B1的對稱點為

再將點和直線A1B1同時向上平移一個單位,得到點

則點O關于AB的對稱點是,

A關于y軸的對稱點是

同理可得'的解析式是,

根據(jù)光線反射原理,'與AB相交的點就是點C,

聯(lián)立,得:

解得,

C點坐標為

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,反比例函數(shù)的圖象經(jīng)過點,直線與雙曲線在第一、三象限分別相交于、兩點,與軸、軸分別相交于兩點.

1)求的值;

2)連接,是否存在實數(shù),使得?若存在,請求出的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)種植AB、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.

1)求yx之間的函數(shù)關系式;

2)設種植的總成本為w元,

wx之間的函數(shù)關系式;

若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為分別是邊上的動點,交于點

如圖(1),若為邊的中點, 的長;

如圖(2),若點上從運動,點.上從運動.兩點同時出發(fā),同時到達各自終點,求在運動過程中,點運動的路徑長:

如圖(3), 分別是邊上的中點,交于點,求的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請根據(jù)排列規(guī)律完成下列問題:

1)填寫下表:

圖形序號

菱形個數(shù)(個)

3

7

________

________

……

……

2)根據(jù)表中規(guī)律猜想,圖n中菱形的個數(shù)_______(用含n的式子表示);

3)是否存在一個圖形恰好由111個菱形組成?若存在,求出圖的序號;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P( x, y1)Q (x y2)分別是兩個函數(shù)圖象C1C2上的任一點. a ≤ x ≤ b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱它們在a ≤ x ≤ b上是“非相鄰函數(shù)”.

例如,點P(x y1)Q (x, y2)分別是兩個函數(shù)y = 3x+1y = 2x - 1圖象上的任一點,當-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構造函數(shù)y = x + 2,并研究它在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.

1)判斷函數(shù)y = 3x + 2y = 2x + 1-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,并說明理由;

2)若函數(shù)y = x2 - xy = x - a0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 為常數(shù))經(jīng)過點 ,與 軸相 交于點 、(點 在點 的右側).

1)求拋物線的解析式和點 的坐標;

2)將直線 向下平移 )個單位長度后,得到的直線與拋物線只有一個公共點 ,求點 的坐標;

3)在(2)的條件下,連接 、,在 正半軸上是否存在點 ,使以 、 為頂點的三角形與 相似.若存在,請求出點 的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正n邊形的周長為60,邊長為a

(1)當n=3時,請直接寫出a的值;

(2)把正n邊形的周長與邊數(shù)同時增加7后,假設得到的仍是正多邊形,它的邊數(shù)為n+7,周長為67,邊長為b.有人分別取n等于3,20,120,再求出相應的ab,然后斷言:“無論n取任何大于2的正整數(shù),ab一定不相等.”你認為這種說法對嗎?若不對,請求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點和點C,與y軸交于點B,的面積是6.

1)求一次函數(shù)與反比例函數(shù)的表達式;(2)當時,比較的大小.

查看答案和解析>>

同步練習冊答案