【題目】如圖,正方形ABCD中,EBD上一點,AE的延長線交CDF,交BC的延長線于G,MFG的中點,連接EC.

1)求證:∠1=2;

2)求證:

【答案】(1)見解析;(2)見解析

【解析】

1)根據(jù)正方形對角線平分一組對角線可得∠ADE=CDE,然后利用邊角邊證明ADECDE全等,根據(jù)全等三角形對應角相等可得∠1=2

2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得MC=MF,再根據(jù)等邊對等角可得∠MCF=MFC,然后求出∠2+MCF=90°,最后根據(jù)垂直的定義證明.

1)證明:在正方形ABCD中,∠ADE=CDE,AD=CD,

ADECDE中,

,

∴△ADE≌△CDE(SAS),

∴∠1=2

(2)證明:∵MFG的中點,

MC=MF,

∴∠MCF=MFC,

ADBC

∴∠1=G,

∵∠G+MFC=90

∴∠2+MCF=90,

ECMC;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BABC4,∠A30°,DAC上一動點,

(Ⅰ)AC的長=_____;

(Ⅱ)BD+DC的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B0,3),且其對稱軸為直線x=﹣1

1)求此拋物線的解析式.

2)若點Q是對稱軸上一動點,當OQ+BQ最小時,求點Q的坐標.

3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求PAB面積的最大值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.

1從中任意抽取1個球不是紅球就是白球   事件,從中任意抽取1個球是黑球   事件;

2)從中任意抽取1個球恰好是紅球的概率是   ;

3)學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.甲、乙兩名同學被選中的概率各是多少?你認為這個規(guī)則公平嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由兩個長為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,過點C做直線,P為直線l上一點,且,則點PBC所在直線的距離是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在東西方向的海岸線l上有長為300米的碼頭AB,在碼頭的最西端A處測得輪船M在它的北偏東45°方向上;同一時刻,在A點正東方向距離100米的C處測得輪船M在北偏東22°方向上.

1)求輪船M到海岸線l的距離;(結果精確到0.01米)

2)如果輪船M沿著南偏東30°的方向航行,那么該輪船能否行至碼頭AB靠岸?請說明理由.

(參考數(shù)據(jù):sin22°0.375,cos22°0.927,tan22°0.4041.732.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結論:①;②;③;④(為實數(shù)).其中結論正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠ACB90°,OC2BO,AC6,點B的坐標為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.

1)求點A的坐標;

2)求拋物線的解析式;

3)點P是直線AB上方拋物線上的一點,過點PPD垂直x軸于點D,交線段AB于點E,使PEDE

①求點P的坐標;

②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案