【題目】如圖,在△ABC中,BA=BC=4,∠A=30°,D是AC上一動點,
(Ⅰ)AC的長=_____;
(Ⅱ)BD+DC的最小值是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點M為二次函數(shù)y=﹣(x﹣b)2+4b+1圖象的頂點,直線y=mx+5分別交x軸正半軸,y軸于點A,B.
(1)判斷頂點M是否在直線y=4x+1上,并說明理由.
(2)如圖1,若二次函數(shù)圖象也經(jīng)過點A,B,且mx+5>﹣(x﹣b)2+4b+1,根據(jù)圖象,寫出x的取值范圍.
(3)如圖2,點A坐標為(5,0),點M在△AOB內(nèi),若點C(,y1),D(,y2)都在二次函數(shù)圖象上,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過點B作BD⊥AB,點C,D都在AB上方,AD交△BCD的外接圓⊙O于點E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長.
②若△BDC為直角三角形,求所有滿足條件的BD的長.
(3)若BC=EC= ,則= .(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點為,頂點為.
(1)求該二次函數(shù)的解析式及點,的坐標;
(2)點是軸上的動點,
①求的最大值及對應(yīng)的點的坐標;
②設(shè)是軸上的動點,若線段與函數(shù)的圖像只有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于點,經(jīng)過點的拋物線與軸的另一個交點為點,點是拋物線上一點,過點作軸于點,連接,設(shè)點的橫坐標為.
求拋物線的解析式;
當點在第三象限,設(shè)的面積為,求與的函數(shù)關(guān)系式,并求出的最大值及此時點的坐標;
連接,若,請直接寫出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC紙片中,AB=BC>AC,點D是AB邊的中點,點E在邊AC上,將紙片沿DE折疊,使點A落在BC邊上的點F處.則下列結(jié)論成立的個數(shù)有( )①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位線;④BF+CE=DF+DE.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com