【題目】如圖,拋物線y=ax2+bx+c的對稱軸為x=﹣1,且過點(,0),有下列結(jié)論:①abc>0; ②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正確的結(jié)論是( 。
A.①③B.①③④C.①②③D.①②③④
【答案】C
【解析】
①根據(jù)拋物線的開口方向、對稱軸、與y軸的交點即可得結(jié)論;
②根據(jù)拋物線與x軸的交點坐標即可得結(jié)論;
③根據(jù)對稱軸和與x軸的交點得另一個交點坐標,把另一個交點坐標代入拋物線解析式即可得結(jié)論;
④根據(jù)點(,0)和對稱軸方程即可得結(jié)論.
解:①觀察圖象可知:
a<0,b<0,c>0,∴abc>0,
所以①正確;
②當x=時,y=0,
即a+b+c=0,
∴a+2b+4c=0,
∴a+4c=﹣2b,
∴a﹣2b+4c=﹣4b>0,
所以②正確;
③因為對稱軸x=﹣1,拋物線與x軸的交點(,0),
所以與x軸的另一個交點為(﹣,0),
當x=﹣時,a﹣b+c=0,
∴25a﹣10b+4c=0.
所以③正確;
④當x=時,a+2b+4c=0,
又對稱軸:﹣=﹣1,
∴b=2a,a=b,
b+2b+4c=0,
∴b=﹣c.
∴3b+2c=﹣c+2c=﹣c<0,
∴3b+2c<0.
所以④錯誤.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù)y=﹣,下列說法正確的是( 。
A.圖象在第一、三象限B.圖象經(jīng)過點(2,﹣8)
C.當x>0時,y隨x的增大而減小D.當x<0時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)內(nèi)從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時間,然后繼續(xù)按原速前往乙地,景區(qū)從甲地開往乙地的電瓶車每隔半小時發(fā)一趟車,速度是,若小華與第1趟電瓶車同時出發(fā),設(shè)小華距乙地的路程為,第趟電瓶車距乙地的路程為,為正整數(shù),行進時間為.如圖畫出了,與的函數(shù)圖象.
(1)觀察圖,其中 , ;
(2)求第2趟電瓶車距乙地的路程與的函數(shù)關(guān)系式;
(3)當時,在圖中畫出與的函數(shù)圖象;并觀察圖象,得出小華在休息后前往乙地的途中,共有 趟電瓶車駛過.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由)
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=10,P為射線AB上一點,連接PD、AC,且PD、AC交于點E,過點A作AF⊥PD,垂足為點F.
(1)當點F落在BC邊上時,求AP的值
(2)當△PAE為等腰三角形時,求AP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示.下列結(jié)論:①;②;③;④其中正確的個數(shù)有( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線與直線相交于點(點在第一象限),其橫坐標為2.
(1)求的值;
(2)若兩個圖像在第三象限的交點為,則點的坐標為 ;
(3)點為此反比例函數(shù)圖像上一點,其縱坐標為3,過點作,交軸于點,直接寫出線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com