【題目】EF是平行四邊ABCD的對角線BD的垂直平分線,EF與邊AD,BC分別交于點(diǎn)EF

1)求證:四邊形BFDE是菱形;

2)若ED=5,BD=8,求菱形BFDE的面積.

【答案】1)見解析;(224

【解析】

1)證△EOD≌△FOB,得出EO=OF,根據(jù)四邊形BFDE對角線垂直且相互平分得出菱形;

2)先根據(jù)菱形的性質(zhì),得出EF的長,然后利用菱形面積公式求解即可.

1)∵四邊形ABCD是平行四邊形

ADBC

∴∠EDO=∠FBO,∠DEO=∠BFO

EFBD的垂直平分線

DO=BOEF⊥BD

∴△EOD≌△FOB(AAS)

∴EO=OF

BO=OD,EF⊥BD

∴四邊形BFDE是菱形

2)∵四邊形BFDE是菱形,BD=8

BO=OD=4

ED=5,EF⊥BD

∴在Rt△EOD中,EO=3

OF=3,∴EF=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計出來;

(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2-2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求點(diǎn)A、B、C的坐標(biāo);

(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PMNQ的周長最大時,求△AEM的面積;

(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點(diǎn)F作

y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若,

求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EF分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為上的點(diǎn),上的點(diǎn),,,那么,

請完成它成立的理由.

.(______)

(______)

∴____________,(______)

(______)

,

(______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場銷售AB兩種型號計算器,兩種計算器的進(jìn)貨價格分別為每臺30元,40. 商場銷售5A型號和1B型號計算器,可獲利潤76元;銷售6A型號和3B型號計算器,可獲利120.

1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格進(jìn)貨價格)

2)商場準(zhǔn)備用不多于2500元的資金購進(jìn)A,B兩種型號計算器共70臺,問最少需要購進(jìn)A型號的計算器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,動點(diǎn)在第一象限及軸上運(yùn)動.第一次它從原點(diǎn)運(yùn)到點(diǎn),然后按圖中箭頭所示方向運(yùn)動,即,每次運(yùn)動一個單位長度,若第2018次運(yùn)動到點(diǎn),則式子的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=ACCG⊥BABA的延長線于點(diǎn)G.一等腰直角三角尺按如圖1所示的位置擺放,該三角尺的直角頂點(diǎn)為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經(jīng)過點(diǎn)B

1)在圖1中請你通過觀察、測量BFCG的長度,猜想并寫出BFCG滿足的數(shù)量關(guān)系,然后證明你的猜想;

2)當(dāng)三角尺沿AC方向平移到圖2所示的位置時,一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點(diǎn)D,過點(diǎn)DDE⊥BA于點(diǎn)E.此時請你通過觀察、測量DE、DFCG 的長度,猜想并寫出DEDFCG之間滿足的數(shù)量關(guān)系,然后證明你的猜想;

3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖3所示的位置(點(diǎn)F在線段AC上,且點(diǎn)F與點(diǎn)C不重合)時,(2)中的猜想是否仍然成立?(不用說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)E在邊AB上,點(diǎn)F是邊BC上不與點(diǎn)B、C重合的一個動點(diǎn),把沿EF折疊,點(diǎn)B落在點(diǎn)處.若,當(dāng)是以為腰的等腰三角形時,線段的長為__________

查看答案和解析>>

同步練習(xí)冊答案