【題目】如圖,在中,,,點(diǎn)為延長線上一點(diǎn),連接,過分別作,垂足為,交于點(diǎn),作,垂足為,交于點(diǎn).
(1)求證:;
(2)如圖,點(diǎn)在的延長線上,且,連接并延長交于點(diǎn),求證:;
(3)在(2)的條件下,當(dāng)時(shí),請直接寫出的值為____________________.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】
(1)利用AAS證明△APN≌△CPQ,可得AN=CQ;
(2)如圖2,連接BQ,證明△DBQ≌△EAN(SAS),可得DQ=EN;
(3)設(shè)AE=2x,AB=3x,則BD=2x,DCx,作輔助線,構(gòu)建直角三角形和相似三角形,證明△AHE∽△AMD和△DQA∽△ANC,得,設(shè)AH=8m,AM=20m,AN=17m,再證明△EHN∽△FMN,即可得出結(jié)論.
(1)如圖1.
∵AP⊥BC,AM⊥CD,∴∠APN=∠CPQ=90°,∴∠PNA+∠NAP=∠NAP+∠CQP=90°,∴∠PNA=∠CQP.
∵AB=AC,∠BAC=90°,∴AP=PC,∴△APN≌△CPQ(AAS),∴AN=CQ;
(2)如圖2,連接BQ,由(1)知:AP是BC的垂直平分線,∴BQ=CQ.
∵AN=CQ,∴AN=BQ.
∵BQ=QC,∴∠QBC=∠QCB=∠NAP.
∵∠PBA=∠PAB=45°,∴∠QBA=∠BAN,∴∠DBQ=∠NAE.
∵BD=AE,∴△DBQ≌△EAN(SAS),∴DQ=EN;
(3)∵AEAB,即,∴設(shè)AE=2x,則AB=3x,BD=2x,DCx,如圖3,過E作EH⊥AM,交MA的延長線于H,∴∠H=∠AMD=90°,∴EH∥DC,∴∠HEA=∠CDA,∴△AHE∽△AMD,∴.
∵∠MAC=∠CDA,∠ACN=∠DAQ=45°,∴△DQA∽△ANC,∴,由(2)知:CQ=AN,∴,∴AN=CQx,S△ADC,AM,∴,∴設(shè)AH=8m,AM=20m,AN=17m,則MN=3m.
∵EH∥FM,∴△EHN∽△FMN,∴.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.某商場為緩解“停車難”問題,擬建造地下停車庫,如圖是該地下停車庫坡道入口的設(shè)計(jì)示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)?/span>.小明認(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小明和小亮誰說得對?請你判斷并計(jì)算出正確的結(jié)果.(結(jié)果精確到0.1 m,參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩線交于點(diǎn)P.
①求證:四邊形CODP是菱形.
②若AD=6,AC=10,求四邊形CODP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,4)、Q(m,n)在函數(shù)y=(k>0)的圖象上,當(dāng)m>1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A、B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、D,QD交PA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積( )
A. 增大 B. 減小
C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他各項(xiàng)費(fèi)用80元.
銷售單價(jià)x(元) | 3.5 | 5.5 |
銷售量y(袋) | 280 | 120 |
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價(jià)為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC⊥BD于點(diǎn)E,AB=BC,F為四邊形ABCD外一點(diǎn),且∠FCA=90°,∠CBF=∠DCB.
(1)求證:四邊形DBFC是平行四邊形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線m:與x軸于點(diǎn)A、點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)將拋物線m繞點(diǎn)B旋轉(zhuǎn),得到新的拋物線n,它的頂點(diǎn)為,與x軸的另一個(gè)交點(diǎn)為.
當(dāng),時(shí),求拋物線n的解析式;
求證:四邊形是平行四邊形;
當(dāng)時(shí),四邊形可能是矩形嗎?若能,請求出拋物線m的解析式;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com