【題目】如圖,四邊形ABCD的對角線AC⊥BD于點(diǎn)E,AB=BC,F為四邊形ABCD外一點(diǎn),且∠FCA=90°,∠CBF=∠DCB.
(1)求證:四邊形DBFC是平行四邊形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是某公共汽車線路收支差額y(票價總收入減去運(yùn)營成本)與乘客量x的函數(shù)圖象,目前這條線路虧損,為了扭虧,有關(guān)部門舉行提高票價的聽證會,乘客代表認(rèn)為:公交公司應(yīng)降低運(yùn)營成本,實(shí)現(xiàn)扭虧,公交公司認(rèn)為:運(yùn)營成本難以下降,提高票價才能扭虧根據(jù)這兩種意見,把圖①分別改畫成圖②和圖③.則下列判斷不合理的是( 。
A. 圖①中點(diǎn)A的實(shí)際意義是公交公司運(yùn)營后虧損1萬元
B. 圖①中點(diǎn)B的實(shí)際意義是乘客量為1.5萬時公交公司收支平衡
C. 圖②能反映公交公司意見
D. 圖③能反映乘客意見
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表中有兩種移動電話計費(fèi)方式:
月使用費(fèi)(元) | 主叫限定時間(分鐘) | 主叫超時費(fèi)(元/分鐘) | 被叫 | |
方式一 | 65 | 160 | 0.25 | 免費(fèi) |
方式二 | 100 | 380 | 0.19 | 免費(fèi) |
說明:月使用費(fèi)固定收取,主叫不超限定時間不再收費(fèi),主叫超時部分加收超時費(fèi);被叫免費(fèi).
(1)若李杰某月主叫通話時間為200分鐘則他按方式一計費(fèi)需 元,按方式二計費(fèi)需 元;若他按方式二計費(fèi)需103.8元,則主叫通話時間為 分鐘;
(2)是否存在某主叫通話時間t(分鐘),按方式一和方式二的計費(fèi)相等,若存在,請求出t的值;若不存在,請說明理由;
(3)請你通過計算分析后,直接給出當(dāng)月主叫通話時間t(分鐘)滿足什么條件時,選擇方式一省錢;當(dāng)每月主叫通話時間t(分鐘)滿足什么條件時,選擇方式二省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊的長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
(3)當(dāng)這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊OA在x軸上,AC與OB交于點(diǎn)D (8,4),反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)D.若將菱形OABC向左平移n個單位,使點(diǎn)C落在該反比例函數(shù)圖象上,則n的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù) 的圖象與性質(zhì),下列說法正確的是( )
A.對稱軸是直線 ,最小值是
B.對稱軸是直線 ,最大值是
C.對稱軸是直線 ,最小值是
D.對稱軸是直線 ,最大值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC∥GE,AF∥DE,點(diǎn)D在直線BC上,點(diǎn)F在直線GE上,且∠1=50°.
(1)求∠AFG的度數(shù);
(2)若AQ平分∠FAC,交直線BC于點(diǎn)Q,且∠Q=18°,則∠ACB的度數(shù)為______°.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB上側(cè)任作一個∠COD,使得∠COD=90°.
(1)如圖1,過點(diǎn)O作射線OE,當(dāng)OE恰好為∠AOD的角平分線時,請直接寫出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ ∠COE(填一個數(shù)字);
(2)如圖2,過點(diǎn)O作射線OE,當(dāng)OC恰好為∠AOE的角平分線時,另作射線OF,使得OF平分∠COD,求∠FOB+∠EOC的度數(shù);
(3)在(2)的條件下,若∠EOC=3∠EOF,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動,設(shè)E點(diǎn)的運(yùn)動時間為t秒,連接DE,當(dāng)△BDE是直角三角形時,t的值______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com