【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,對角線AC,BE相交于點M.若AB=1,則BM的長為__________

【答案】

【解析】

根據(jù)正五邊形內(nèi)角和可知∠BAE=108°,由三角形內(nèi)角和可知∠AEB=∠ABE=36°,進而可得∠EAM=∠AME=72°,所以ME=AE,根據(jù)∠BAE=∠AMB,∠BAM=∠AEB∠ABM=∠ABE可知△ABM∽△ABE,根據(jù)相似三角形對應邊的比例關系即可求出BM的長.

BM=x,

∵ABCDE是正五邊形,

∠BAE=108°,∠AEB=∠ABE=36°,

∴∠EAM=∠AME=72°,

∴ME=AE,

∵∠BAE=∠AMB,∠BAM=∠AEB∠ABM=∠ABE,

∴△ABM∽△ABE,

,

解得 (舍去), ,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在半圓O中,AB為直徑,P為弧AB的中點,分別在弧AP和弧PB上取中點A1和B1,再在弧PA1和弧PB1上分別取中點A2和B2,若一直這樣取中點,求∠AnPBn=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進路線,在BC的中點M處放置了一臺定位儀器,設尋寶者行進的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進,且表示y與x的函數(shù)關系的圖像大致如圖②所示,則尋寶者的行進路線可能為:

A. A→O→B B. B→A→C C. B→O→C D. C→B→O

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題提出】

如圖①,已知ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將BCE繞點C順時針旋轉(zhuǎn)60°ACF連接EF

試證明:AB=DB+AF

【類比探究】

(1)如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關系?請說明理由

(2)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關系,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊三角形的邊長為,過邊上一點于點,延長線上一點,取,連接,交,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線AB:y=x+by軸于點A(0,4),交x軸于點B.

(1)求點B的坐標;

(2)直線l垂直平分OBAB于點D,交x軸于點E,點P是直線l上一動點,且在點D的上方,設點P的縱坐標為n.

①用含n的代數(shù)式表示△ABP的面積;

②當SABP=8時,求點P的坐標;

(3)(2)中②的條件下,以PB為斜邊作等腰直角△PBC,求點C的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線y=﹣x+3x軸、y軸交于點A,點B,點O關于直線AB的對稱點為點O′,且點O′恰好在反比例函數(shù)y=的圖象上.

(1)求點AB的坐標;

(2)求k的值;

(3)若y軸正半軸有點P,過點Px軸的平行線,且與反比例函數(shù)y=的圖象交于點Q,設A、P、Q、O′四個點所圍成的四邊形的面積為S.若S=SOAB時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,AC的垂直平分線MN交AB于D,交AC于E.

(1)若A=40°,求BCD的度數(shù);

(2)若AE=5,BCD的周長17,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形AEHC是由三個全等矩形拼成的,AHBEBF、DFDG、CG分別交于點P、QK、M、N.設△BPQ,△DKM,△CNH的面積依次為S1,S2,S3.若S1+S320,則S2的值為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習冊答案