【題目】定義:在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,當(dāng)時(shí),點(diǎn)坐標(biāo)為;當(dāng)時(shí),點(diǎn)坐標(biāo)為,則稱點(diǎn)為點(diǎn)分變換點(diǎn)(其中為常數(shù)).例如:0分變換點(diǎn)坐標(biāo)為

1)點(diǎn)1分變換點(diǎn)坐標(biāo)為 ;點(diǎn)1分變換點(diǎn)在反比例函數(shù)圖像上,則 ;若點(diǎn)1分變換點(diǎn)直線上,則 ;

2)若點(diǎn)在二次函數(shù)的圖像上,點(diǎn)為點(diǎn)3分變換點(diǎn).

①直寫出點(diǎn)所在函數(shù)的解析式;

②求點(diǎn)所在函數(shù)的圖像與直線交點(diǎn)坐標(biāo);

③當(dāng)時(shí),點(diǎn)所在函數(shù)的函數(shù)值,直接寫出的取值范圍;

3)點(diǎn),若點(diǎn)在二次函數(shù)的圖像上,點(diǎn)為點(diǎn)分變換點(diǎn).當(dāng)點(diǎn)所在函數(shù)的圖像與線段有兩個(gè)公共點(diǎn)時(shí),直接寫出的取值范圍.

【答案】1)(-5,-7),4,8;(2點(diǎn)Q所在函數(shù)的關(guān)系式為;交點(diǎn)坐標(biāo)為(-4,-5)或(,-5);t的取值范圍為;(3

【解析】

1)根據(jù)題意給的定義,即可得到答案;

2)①設(shè)點(diǎn)Q的坐標(biāo)為(a,b),分情況討論,然后用a,b表示P的坐標(biāo),代入函數(shù)關(guān)系式整理變形即可;

②將y=-5代入函數(shù)關(guān)系式求解即可;

③先畫出函數(shù)圖像,結(jié)合函數(shù)圖像找到相應(yīng)的端點(diǎn),求出端點(diǎn)坐標(biāo)即可判斷t的取值范圍;

3)先求出Q所在的函數(shù)關(guān)系式,再畫出相應(yīng)的函數(shù)圖像分情況討論,分別討論當(dāng)函數(shù)經(jīng)過端點(diǎn)A、B及函數(shù)圖像的頂點(diǎn)在線段AB上時(shí)的m的值,進(jìn)而可得m的取值范圍.

解:(1)∵51,

∴(5,7)的1分變換點(diǎn)為(-5,-7),

11,

∴(1,6)的1分變換點(diǎn)為(-1,-4

將(-1,-4)代入,得k4,

當(dāng)a11時(shí),(a1,5)的1分變換點(diǎn)為(1a,-5

將(1a,-5)代入yx2得,-51a2,

解得a8,

當(dāng)a11時(shí),(a1,5)的1分變換點(diǎn)為(1a,-3

將(1a,-3)代入yx2得,-31a2

解得a6,(舍去)

a8,

故答案為:(-5,-7),4,8;

2)①設(shè)點(diǎn)Q的坐標(biāo)為(ab

當(dāng)x3時(shí),若點(diǎn)P3分變換點(diǎn)為Qa,b),則a=-x,b=-y,

x=-ay=-b

x=-a,y=-b代入

,

整理得:,

∴點(diǎn)Q所在函數(shù)的關(guān)系式為x<-3),

當(dāng)x3時(shí),若點(diǎn)P3分變換點(diǎn)為Qa,b),則a=-xb=-y2,

x=-ay=-b2

x=-a,y=-b2代入

,

整理得:,

∴點(diǎn)Q所在函數(shù)的關(guān)系式為x≥-3),

綜上所述,點(diǎn)Q所在函數(shù)的關(guān)系式為

②將y=-5代入

解得:(舍去)

y=-5代入

解得:(舍去)

綜上所述,點(diǎn)所在函數(shù)的圖像與直線交點(diǎn)坐標(biāo)為(-4,-5)或(,-5

③如圖,

由②可知經(jīng)過點(diǎn)(-4,-5

所以此拋物線的頂點(diǎn)坐標(biāo)為(-16),

x=-3代入y0

y0代入(舍去)

∵當(dāng)時(shí),點(diǎn)所在函數(shù)的函數(shù)值,

t的取值范圍為;

3)∵

∵點(diǎn)在二次函數(shù)的圖像上,

∴點(diǎn)Q在函數(shù)的圖像上,

當(dāng)m0時(shí),

如圖,當(dāng)經(jīng)過點(diǎn)A(-3,-1)時(shí)

解得(舍去)

如圖,當(dāng)的頂點(diǎn)在線段AB上時(shí),

,

解得(舍去)

,

如圖,當(dāng)的端點(diǎn)落在線段AB上時(shí),

代入

解得:(舍去)

如圖,當(dāng)經(jīng)過點(diǎn)B2,-1)時(shí)

解得:(舍去)

如圖,當(dāng)經(jīng)過點(diǎn)B2,-1)時(shí)

解得:(舍去)

如圖,當(dāng)的頂點(diǎn)在線段AB上時(shí),

解得:(舍去)

綜上所述,m的取值范圍為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線=為任意實(shí)數(shù))

1)無論取何值,拋物線恒過兩點(diǎn)________,________

2)當(dāng)時(shí),設(shè)拋物線在第一象限依次經(jīng)過整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))為,.將拋物線沿直線平移,平移后的拋物線記為,拋物線經(jīng)過點(diǎn)的頂點(diǎn)為,例如時(shí),拋物線經(jīng)過點(diǎn)頂點(diǎn)為

拋物線的解析式為________;頂點(diǎn)坐標(biāo)為________;

在拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo),并判斷四邊形的形狀;若不存在,請(qǐng)說明理由.

直接寫出線段的長(zhǎng)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;

(2)拓展:用轉(zhuǎn)化思想求方程的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格也相同).若購(gòu)買個(gè)籃球和個(gè)足球共需元,購(gòu)買個(gè)籃球和個(gè)足球共需元.

1)購(gòu)買一個(gè)籃球、一個(gè)足球各需多少元?

2)根據(jù)該中學(xué)的實(shí)際情況,需從體育用品商店一次性購(gòu)買籃球和足球共個(gè).要求購(gòu)買總金額不能超過元,則最多能購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于世界人口增長(zhǎng)、水污染以及水資源浪費(fèi)等原因,全世界面臨著淡水資源不足的問題,我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護(hù)水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門對(duì)某小區(qū)的20戶居民的月用水量進(jìn)行了調(diào)查,數(shù)據(jù)如下(單位):

6.7 8.7 7.3 11.4 7.0 6.9 11.7 9.7 10.0 9.7

7.3 8.4 10.6 8.7 7.2 8.7 10.5 9.3 8.4 8.7

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補(bǔ)充表格(表1):

用水量

人數(shù)

6

b

4

分析數(shù)據(jù):補(bǔ)全下列表格中的統(tǒng)計(jì)量(表2):

平均數(shù)

中位數(shù)

眾數(shù)

8.85

8.7

得出結(jié)論:

1)表中的 , ;

2)若用表1中的數(shù)據(jù)制作一個(gè)扇形統(tǒng)計(jì)圖,所占的扇形圓心角的度數(shù)為 度;

3)如果該小區(qū)有住戶400戶,根據(jù)樣本估計(jì)用水量在的居民有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是菱形,BCx軸,點(diǎn)B的坐標(biāo)是(1,),坐標(biāo)原點(diǎn)OAB的中點(diǎn).動(dòng)圓⊙P的半徑是,圓心在x軸上移動(dòng),若⊙P在運(yùn)動(dòng)過程中只與菱形ABCD的一邊相切,則點(diǎn)P的橫坐標(biāo)m 的取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為坐標(biāo)原點(diǎn),ABCD的邊ABx軸上,頂點(diǎn)Dy軸的正半軸上,點(diǎn)C在第一象限,將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DEBC交于點(diǎn)F.若yx0)的圖象經(jīng)過點(diǎn)CSBEF,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市從一樓到二樓有一自動(dòng)扶梯,如圖是自動(dòng)扶梯的側(cè)面示意圖,已知自動(dòng)扶梯AB的坡度為12.4AB的長(zhǎng)度為13米,MN是二樓樓頂,MNPQ,CMN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BCMN,在自動(dòng)扶梯底端A處側(cè)得C點(diǎn)的仰角為 42°,則二樓的層高BC約為(精確到0.1米,)(

A.10.8B.8.9C.8.0D.5.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點(diǎn)A,過點(diǎn)AABx軸于點(diǎn)B,則SAOB_____

查看答案和解析>>

同步練習(xí)冊(cè)答案