【題目】宜昌四中男子籃球隊(duì)在2016全區(qū)籃球比賽中蟬聯(lián)冠軍,讓全校師生倍受鼓舞.在一次與第25中學(xué)的比賽中,運(yùn)動(dòng)員小濤在距籃下4米處跳起投籃,如圖所示,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離為2.5米時(shí),達(dá)到最大高度3.5米,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05米.
(1)建立如圖所示的直角坐標(biāo)系,求拋物線的表達(dá)式;
(2)運(yùn)動(dòng)員小濤的身高是1.8米,在這次跳投中,球在頭頂上方0.25米處出手,問(wèn):球出手時(shí),小濤跳離地面的高度是多少?
【答案】(1)y=﹣0.2x2+3.5;(2)球出手時(shí),他跳離地面的高度為0.2m.
【解析】試題分析:(1)設(shè)拋物線的表達(dá)式為y=ax2+3.5,利用待定系數(shù)法,可得a的值;
(2)設(shè)球出手時(shí),他跳離地面的高度為hm,則可得h+2.05=﹣0.2×(﹣2.5)2+3.5.
試題解析:解:(1)∵當(dāng)球運(yùn)行的水平距離為2.5米時(shí),達(dá)到最大高度3.5米,∴拋物線的頂點(diǎn)坐標(biāo)為(0,3.5),∴設(shè)拋物線的表達(dá)式為y=ax2+3.5.
由圖知圖象過(guò)以下點(diǎn):(1.5,3.05),∴2.25a+3.5=3.05,解得:a=﹣0.2,∴拋物線的表達(dá)式為y=﹣0.2x2+3.5.
(2)設(shè)球出手時(shí),他跳離地面的高度為hm,
因?yàn)椋?/span>1)中求得y=﹣0.2x2+3.5,
則球出手時(shí),球的高度為h+1.8+0.25=(h+2.05)m,
∴h+2.05=﹣0.2×(﹣2.5)2+3.5,
∴h=0.2(m).
答:球出手時(shí),他跳離地面的高度為0.2m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BD⊥AC,AE⊥BC,AE、BD交于點(diǎn)O,連接CO,∠ABC=54°,∠ACB=48°,則∠COD=( )
A. 51°B. 66°C. 78°D. 88°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來(lái)測(cè)量操場(chǎng)旗桿AB的高度,他們通過(guò)調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測(cè)點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社的一則廣告如下:我社推出去井岡山紅色旅游,收費(fèi)標(biāo)準(zhǔn)為:如果組團(tuán)人數(shù)不超過(guò)30人,人均收費(fèi)800元;如果人數(shù)多于30人,那么每增加1人,人均收費(fèi)降低10元,但人均收費(fèi)不得低于500元,甲公司想分批組織員工到井岡山紅色旅游學(xué)習(xí).
(1)如果第一批組織38人去學(xué)習(xí),則公司應(yīng)向旅行社交費(fèi) 元;
(2)如果公司計(jì)劃用29250元組織第一批員工去學(xué)習(xí),問(wèn)這次旅游學(xué)習(xí)應(yīng)安排多少人參加?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ ABCD中,點(diǎn)E、F在對(duì)角線BD上,且BE=DF.
(1)求證:AE=CF;
(2)求證:四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0).
(1)求點(diǎn)B的坐標(biāo).
(2)已知a=1,C為拋物線與y軸的交點(diǎn).
①若點(diǎn)P在拋物線上,且S△POC=4S△BOC,求點(diǎn)P的坐標(biāo).
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BD的垂直平分線交AD于E,交BC于F,連接BE 、DF.
(1)判斷四邊形BEDF的形狀,并說(shuō)明理由;
(2)若AB=8,AD=16,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo).
(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(dòng)(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)背景:過(guò)中心對(duì)稱(chēng)圖形的對(duì)稱(chēng)中心的任意一條直線都將其分成全等的兩個(gè)部分.
(1)如圖①,直線m經(jīng)過(guò)平行四邊形ABCD對(duì)角線的交點(diǎn)O,則S四邊形AEFB S四邊形DEFC(填“>”“<”“=”);
(2)如圖②,兩個(gè)正方形如圖所示擺放,O為小正方形對(duì)角線的交點(diǎn),求作過(guò)點(diǎn)O的直線將整個(gè)圖形分成面積相等的兩部分;
(3)八個(gè)大小相同的正方形如圖③所示擺放,求作直線將整個(gè)圖形分成面積相等的兩部分(用三種方法分割).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com