【題目】如圖所示,某長(zhǎng)方形廣場(chǎng)的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長(zhǎng)方形的長(zhǎng)為a米,寬為b米.
(1)請(qǐng)列式表示廣場(chǎng)空地的面積;
(2)若長(zhǎng)方形的長(zhǎng)為300米,寬為200米,圓形的半徑為10米,計(jì)算廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).
【答案】(1)ab-πr2;(2)60 000-100π.
【解析】
(1)草地面積=圓形面積;空地的面積=長(zhǎng)方形面積-草地面積;
(2)把a=300米,b=200米,圓形的半徑=10米代入(1)中式子即可.
(1)廣場(chǎng)空地的面積(單位:平方米)為:ab-πr2;
(2)當(dāng)a=300,b=200,r=10時(shí),ab-πr2=300×200-π×102=60 000-100π.
所以廣場(chǎng)空地的面積(單位:平方米)為:60 000-100π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對(duì)折成∠COB(OA與OB重合),從O點(diǎn)引一條射線(xiàn)OE,使∠BOE=∠EOC,再沿OE把角剪開(kāi),若剪開(kāi)后得到的3個(gè)角中最大的一個(gè)角為76°,則∠AOB=_____________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小俊在A處利用高為1.5米的測(cè)角儀AB測(cè)得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測(cè)得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn) ( < <0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下結(jié)論:
① <0;②該拋物線(xiàn)的對(duì)稱(chēng)軸在y軸左側(cè);③關(guān)于x的方程 有實(shí)數(shù)根;④對(duì)于自變量x的任意一個(gè)取值,都有 ,其中正確的為( )
A.①②
B.①②④
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B在數(shù)軸上表示的數(shù)分別是m,n.
(1)填寫(xiě)下表:
(2)若A,B兩點(diǎn)間的距離為d,寫(xiě)出d與m,n之間的數(shù)量關(guān)系.
(3)在數(shù)軸上標(biāo)出所有符合條件的整數(shù)點(diǎn)P,使它到5和-5的距離之和為10,并求出所有這些整數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在已知線(xiàn)段AB的同側(cè)構(gòu)造∠FAB=∠GBA,并且在射線(xiàn)AF,BG上分別取點(diǎn)D和E,在線(xiàn)段AB上取點(diǎn)C,連結(jié)DC和EC.
Ⅰ、如圖,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60或∠FAB=∠GBA=90兩種情況中任選一種,解決以下問(wèn)題:
①線(xiàn)段AB的長(zhǎng)度是否發(fā)生變化,直接寫(xiě)出長(zhǎng)度或變化范圍;
②∠DCE的度數(shù)是否發(fā)生變化,直接寫(xiě)出度數(shù)或變化范圍.
Ⅱ、若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE這兩個(gè)三角形全等,請(qǐng)求出:
①線(xiàn)段AB的長(zhǎng)度或取值范圍,并說(shuō)明理由;
②∠DCE的度數(shù)或取值范圍,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形紙片ABCD中,AD//BC,AD>CD,將紙片沿過(guò)點(diǎn)D的直線(xiàn)折疊,使點(diǎn)C落在AD上的點(diǎn)C處,折痕DE交BC于點(diǎn)E,連結(jié)C′E.
求證:四邊形CDC′E是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋里裝有若干個(gè)相同的紅球,為了估計(jì)袋中紅球的數(shù)量,某學(xué)習(xí)小組做了摸球?qū)嶒?yàn),他們將30個(gè)與紅球大小形狀完全相同的白球裝入袋中,攪勻后從中隨機(jī)摸出一個(gè)球并記下顏色,再把它放回袋中,不斷重復(fù).下表是幾次活動(dòng)匯總后統(tǒng)計(jì)的數(shù)據(jù):
(1)請(qǐng)估計(jì):當(dāng)次數(shù)s很大時(shí),摸到白球的頻率將會(huì)接近 ;假如你去摸一次,你摸到白球的概率是 (精確到0.1).
(2)試估算口袋中紅球有多少只?
(3)解決了上面的問(wèn)題后請(qǐng)你從統(tǒng)計(jì)與概率方面談一條啟示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,G是BC上任意一點(diǎn)(點(diǎn)G與B、C不重合),AE⊥DG于E,CF∥AE交DG于F.請(qǐng)你經(jīng)過(guò)觀察、猜測(cè)線(xiàn)段FC、AE、EF之間是否存在一定的數(shù)量關(guān)系?若存在,證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com