如圖,在7×4的方格(每個(gè)方格的邊長(zhǎng)為1個(gè)單位長(zhǎng))中,⊙A的半徑為l,⊙B的半徑為2,將⊙A由圖示位置向右平移1個(gè)單位長(zhǎng)后,⊙A與靜止的⊙B的位置關(guān)系是
A.相交B.內(nèi)切C.外切D.內(nèi)含
C.

試題分析:本題考查了由數(shù)量關(guān)系來(lái)判斷兩圓位置關(guān)系的方法.即設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.觀察圖形,將⊙A由圖示位置向右平移1個(gè)單位長(zhǎng)后,AB=3=1+2,即圓心距等于兩圓半徑和,可知兩圓外切.故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)C是以AB為直徑的⊙O上的一點(diǎn),AD與過(guò)點(diǎn)C的切線互相垂直,垂足為點(diǎn)D.

(1)求證:AC平分∠BAD;
(2)若CD=1,AC=,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且∠CBF=∠CAB.

(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AO是△ABC的中線,⊙O與AB相切于點(diǎn)D.

(1)要使⊙O與AC邊也相切,應(yīng)增加條件__       _______.
(2)增加條件后,請(qǐng)你證明⊙O與AC相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的弦,D是半徑OA的中點(diǎn),過(guò)D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于F,且CE=CB。

(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);(3)如果CD=15,BE=10,sinA=,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

⊙O的直徑AB=10cm,弦CD⊥AB,垂足為P.若OP:OB=3:5,則CD的長(zhǎng)為( 。
A.6cmB.4cmC.8cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,這是當(dāng)初中央電視臺(tái)設(shè)計(jì)臺(tái)徽時(shí)的模型,它是以正方形ABCD的每個(gè)頂點(diǎn)為圓心,每邊長(zhǎng)為半徑畫圓弧交于E、F、G、H、若邊長(zhǎng)AB=4cm,則點(diǎn)F到BC的距離是        圍成的曲邊四邊形EFGH的周長(zhǎng)是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將一個(gè)圓心角為150°,半徑為6的扇形作一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面圓的半徑為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在半徑為9cm的圓中,60°的圓心角所對(duì)的弧長(zhǎng)為(   )cm.
A.3πB.4πC.6πD.9π

查看答案和解析>>

同步練習(xí)冊(cè)答案