【題目】一位籃球運(yùn)動(dòng)員在距離籃圈中心水平距離處起跳投籃,球沿一條拋物線運(yùn)動(dòng),當(dāng)球運(yùn)動(dòng)的水平距離為時(shí),達(dá)到最大高度,然后準(zhǔn)確落入籃筐內(nèi).已知籃圈中心距離地面高度為,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是(

A.籃圈中心的坐標(biāo)是

B.此拋物線的解析式是

C.此拋物線的頂點(diǎn)坐標(biāo)是

D.籃球出手時(shí)離地面的高度是

【答案】A

【解析】

設(shè)拋物線的表達(dá)式為y=ax2+3.5,依題意可知圖象經(jīng)過的坐標(biāo),由此可得a的值,可判斷A;根據(jù)函數(shù)圖象可判斷B、C;設(shè)這次跳投時(shí),球出手處離地面hm,因?yàn)榍蟮?/span>,當(dāng)x=-2,5時(shí),即可判斷D

解:A、∵拋物線的頂點(diǎn)坐標(biāo)為(0,3.5),
∴可設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+3.5
∵籃圈中心(1.53.05)在拋物線上,將它的坐標(biāo)代入上式,得3.05=a×1.52+3.5,

a=,

,故本選項(xiàng)正確;
B、由圖示知,籃圈中心的坐標(biāo)是(1.5,3.05),故本選項(xiàng)錯(cuò)誤;
C、由圖示知,此拋物線的頂點(diǎn)坐標(biāo)是(0,3.5),故本選項(xiàng)錯(cuò)誤;
D、設(shè)這次跳投時(shí),球出手處離地面hm,
因?yàn)椋?/span>1)中求得y=-0.2x2+3.5,
∴當(dāng)x=-2.5時(shí),
h=-0.2×-2.52+3.5=2.25m
∴這次跳投時(shí),球出手處離地面2.25m,故本選項(xiàng)錯(cuò)誤.
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)DAB上,點(diǎn)EAC延長(zhǎng)線上,且BDCE,連接DEBC于點(diǎn)F,作DHBC于點(diǎn)H,連接CD.若tanDFH,SBCD18,則DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.

(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),求拋物線的解析式;

(2)求支柱的長(zhǎng)度;

(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場(chǎng)需求,某超市在五月初五端午節(jié)來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤(rùn)P(元)最大?最大利潤(rùn)是多少?

3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤(rùn),那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(jí)(8)班的4名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問卷,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式) 設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息, 解答下列問題:

1)本次接受調(diào)查的總?cè)藬?shù)是 人, 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖中,步行的人數(shù)所占的百分比是 ,其他方式所在扇形的圓心角度數(shù)是 ;

3)已知這4名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果.請(qǐng)你用列表法或畫樹狀圖的方法, 求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤(rùn)W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB=9,點(diǎn)C為線段AB上一點(diǎn),AC=3,點(diǎn)D為平面內(nèi)一動(dòng)點(diǎn),且滿足CD=3,連接BDBD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90DE,連接BE、AE,AE的最大值為 ________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,tanACB=2,D在△ABC內(nèi)部,且AD=CD,ADC=90°,連接BD,若△BCD的面積為10,則AD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2bxc的圖象如圖所示,對(duì)稱軸為直線x1.以下結(jié)論:①2a>-b;②4a2bc0;③mamb)>abm是大于1的實(shí)數(shù));④3ac0其中正確結(jié)論的個(gè)數(shù)為( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案