【題目】閱讀下面的材料: 2014年,是全面深化改革的起步之年,是實(shí)施“十二五”規(guī)劃的攻堅(jiān)之年,房山區(qū)經(jīng)濟(jì)發(fā)展穩(wěn)中有升、社會(huì)局面和諧穩(wěn)定,年初確定的主要任務(wù)目標(biāo)圓滿完成:全年地區(qū)生產(chǎn)總值和固定資產(chǎn)投資分別為530和505億元;區(qū)域稅收完成202.8億;城鄉(xiāng)居民人均可支配收入分別達(dá)到3.6萬元和1.9萬元.
2015年,我區(qū)較好實(shí)現(xiàn)了“十二五”時(shí)期經(jīng)濟(jì)社會(huì)發(fā)展目標(biāo),開啟了房山轉(zhuǎn)型發(fā)展的新航程:全年地區(qū)生產(chǎn)總值比上年增長(zhǎng)7%左右;固定資產(chǎn)投資完成530億元;區(qū)域稅收完成247億元;公共財(cái)政預(yù)算收入完成50.02億元;城鄉(xiāng)居民人均可支配收入分別增長(zhǎng)8%和10%.
2016年,發(fā)展路徑不斷完善,房山區(qū)全年地區(qū)生產(chǎn)總值完成595億元,固定資產(chǎn)投資完成535億元,超額實(shí)現(xiàn)預(yù)期目標(biāo),區(qū)域稅收比上一年增長(zhǎng)4.94億元,城鄉(xiāng)居民可支配收入分別增長(zhǎng)8.%和8.8%.
(摘自《房山區(qū)政府工作報(bào)告》)
根據(jù)以上材料解答下列問題:
(1)2015年,我區(qū)全年地區(qū)生產(chǎn)總值為億元.
(2)選擇統(tǒng)計(jì)圖或統(tǒng)計(jì)表,將我區(qū)2014~2016年全年地區(qū)生產(chǎn)總值、固定資產(chǎn)投資和區(qū)域稅收表示出來.
【答案】
(1)567.1
(2)我區(qū)2014~2016年全年地區(qū)生產(chǎn)總值、固定資產(chǎn)投資和區(qū)域稅收統(tǒng)計(jì)表
.
【解析】解:(1)由題意,得 530×(1+7%)=567.1億元,
所以答案是:567.1;
【考點(diǎn)精析】本題主要考查了統(tǒng)計(jì)圖的選擇的相關(guān)知識(shí)點(diǎn),需要掌握條形統(tǒng)計(jì)圖便于直觀了解數(shù)據(jù)的大小及不同數(shù)據(jù)的差異;折線統(tǒng)計(jì)圖便于直觀了解數(shù)據(jù)的變化趨勢(shì),同時(shí)也便于了解數(shù)據(jù)的多少;扇形統(tǒng)計(jì)圖便于直觀了解各部分?jǐn)?shù)量與總數(shù)的百分比,以及部分與部分之間的大小關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O在直線AB上,點(diǎn)A1、A2、A3,…在射線OA上,點(diǎn)B1、B2、B3,…在射線OB上,圖中的每一個(gè)實(shí)線段和虛線段的長(zhǎng)均為一個(gè)單位長(zhǎng)度,一個(gè)動(dòng)點(diǎn)M從O點(diǎn)出發(fā),按如圖所示的箭頭方向沿著實(shí)線段和以O為圓心的半圓勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,按此規(guī)律,則動(dòng)點(diǎn)M到達(dá)A101點(diǎn)處所需時(shí)間為____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,AD是BC邊上的高,AE平分∠BAC.
(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:
對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.
對(duì)數(shù)的定義:一般地,若ax=N(a>0,a≠1),那么x叫做以a為底N的對(duì)數(shù),記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對(duì)數(shù)式2=log525可以轉(zhuǎn)化為52=25.
我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
設(shè)logaM=m,logaN=n,則M=am,N=an
∴MN=aman=am+n,由對(duì)數(shù)的定義得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解決以下問題:
(1)將指數(shù)43=64轉(zhuǎn)化為對(duì)數(shù)式_____;
(2)證明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)
(3)拓展運(yùn)用:計(jì)算log32+log36﹣log34=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C;點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(﹣6,n);E為x軸正半軸上一點(diǎn),且tan∠AOE= .
(1)求點(diǎn)A的坐標(biāo);
(2)求一次函數(shù)的表達(dá)式;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,∠B=90°,點(diǎn)D為直線BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),連結(jié)AD,將線段AD繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)90°,使點(diǎn)A旋轉(zhuǎn)到點(diǎn)E,連結(jié)EC.
(1)如果點(diǎn)D在線段BC上運(yùn)動(dòng),如圖1:
①依題意補(bǔ)全圖1;
②求證:∠BAD=∠EDC;
③通過觀察、實(shí)驗(yàn),小明得出結(jié)論:在點(diǎn)D運(yùn)動(dòng)的過程中,總有∠DCE=135°,.
小明與同學(xué)討論后,形成了證明這個(gè)結(jié)論的幾種想法:
想法一:在AB上取一點(diǎn)F,使得BF=BD,要證∠DCE=135°,只需證△ADF≌△DEC.
想法二:以點(diǎn)D為圓心,DC為半徑畫弧交AC于點(diǎn)F,要證∠DCE=135°,只需證△AFD≌△DCE.
想法三:過點(diǎn)E作BC所在直線的垂直線段EF,要證∠DCE=135°,只需證EF=CF.
…
請(qǐng)你參考上面的想法,證明∠DCE=135°
(2)如果點(diǎn)D在線段CB的延長(zhǎng)線上運(yùn)動(dòng),利用圖2畫圖分析,∠DCE的度數(shù)還是確定的值嗎?如果是,直接寫出∠DCE的度數(shù);如果不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,0)、(5,0)、(0、﹣5).
(1)求此二次函數(shù)的解析式;
(2)當(dāng)0≤x≤5時(shí),求此函數(shù)的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形BCO是三角形BAO經(jīng)過某種變換得到的.
(1)寫出A,C的坐標(biāo);
(2)圖中A與C的坐標(biāo)之間的關(guān)系是什么?
(3)如果三角形AOB中任意一點(diǎn)M的坐標(biāo)為(x,y),那么它的對(duì)應(yīng)點(diǎn)N的坐標(biāo)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC是正三角形,曲線CDEF叫做“正三角形的漸開線”,其中 、 、 圓心依次按A、B、C…循環(huán),它們依次相連接.若AB=1,則曲線CDEF長(zhǎng)是(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com