【題目】如圖,在邊長(zhǎng)相同的小正方形網(wǎng)格中,點(diǎn)A、B、CD都在這些小正方形的頂點(diǎn)上,ABCD相交于點(diǎn)P,則tanAPD的值為______.

【答案】2

【解析】

首先連接BE,由題意易得BF=CFACP∽△BDP,然后由相似三角形的對(duì)應(yīng)邊成比例,易得DPCP=13,即可得PFCF=PFBF=12,在RtPBF中,即可求得tanBPF的值,繼而求得答案.

如圖:

,

連接BE,

∵四邊形BCED是正方形,

DF=CF=CD,BF=BE,CD=BE,BECD,

BF=CF,

根據(jù)題意得:ACBD,

∴△ACP∽△BDP

DPCP=BDAC=13,

DPDF=12,

DP=PF=CF=BF

RtPBF中,tanBPF==2,

∵∠APD=BPF,

tanAPD=2
故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題情境

如圖,同學(xué)們用矩形紙片ABCD開(kāi)展數(shù)學(xué)探究活動(dòng),其中AD=8,CD=6。

操作計(jì)算

(1)如圖(1),分別沿BE,DF剪去RtΔABE和RtΔCDF兩張紙片,如果剩余的紙片BEDF菱形,求AE的長(zhǎng);

圖(1) 圖(2) 圖(3)

操作探究

把矩形紙片ABCD沿對(duì)角線(xiàn)AC剪開(kāi),得到ΔABC和兩張紙片

(2)將兩張紙片如圖(2)擺放,點(diǎn)C和重合,點(diǎn)B,C,D在同一條直線(xiàn)上,連接,記的中點(diǎn)為M,連接BM,MD,發(fā)現(xiàn)ΔBMD是等腰三角形,請(qǐng)證明:

(3)如圖(3),將兩張紙片疊合在一起,然后將紙片繞點(diǎn)B順時(shí)針旋轉(zhuǎn)a(00<a<900),連接,探究并直接寫(xiě)出線(xiàn)段的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷(xiāo)售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠(chǎng)商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一次函數(shù)ykx+m的圖象經(jīng)過(guò)二次函數(shù)yax2+bx+c的頂點(diǎn),我們則稱(chēng)這兩個(gè)函數(shù)為丘比特函數(shù)組

1)請(qǐng)判斷一次函數(shù)y=﹣3x+5和二次函數(shù)yx24x+5是否為丘比特函數(shù)組,并說(shuō)明理由.

2)若一次函數(shù)yx+2和二次函數(shù)yax2+bx+c丘比特函數(shù)組,已知二次函數(shù)yax2+bx+c頂點(diǎn)在二次函數(shù)y2x23x4圖象上并且二次函數(shù)yax2+bx+c經(jīng)過(guò)一次函數(shù)yx+2y軸的交點(diǎn),求二次函數(shù)yax2+bx+c的解析式;

3)當(dāng)﹣3≤x≤1時(shí),二次函數(shù)yx22x4的最小值為a,若丘比特函數(shù)組中的一次函數(shù)y2x+3和二次函數(shù)yax2+bx+cb、c為參數(shù))相交于PQ兩點(diǎn)請(qǐng)問(wèn)PQ的長(zhǎng)度為定值嗎?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且EDF=45°.將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM.

1)求證:EF=FM

2)當(dāng)AE=1時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點(diǎn)F在邊AC上,DFBE相交于點(diǎn)G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC=10,BC=12,點(diǎn)E是弧BC的中點(diǎn).

(1)過(guò)點(diǎn)EBC的平行線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,求證:DE是⊙O的切線(xiàn).

(2)點(diǎn)F是弧AC的中點(diǎn),求EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案