【題目】如圖,六邊形的六個內(nèi)角都等于,若,,則這個六邊形的周長等于____.

【答案】17

【解析】

分別作直線AB、CD、EF的延長線使它們交于點G、H、P,根據(jù)題意推出三角形APF、三角形BGC、三角形DHE、三角形GHP都是等邊三角形,接著求出大等邊三角形的邊長,從而求出AF,EF的長,即可求得周長.

如圖,分別作直線AB、CDEF的延長線使它們交于點GH、P.

因為六邊形ABCDEF的六個角都是

所以六邊形ABCDEF的每一個外角的度數(shù)都是.

所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等邊三角形.

所以GC=BC=3cmDH=DE=2cm.

所以GH=3+3+2=8cm,FA=PA=PGABBG=833=2cm,EF=PHPFEH=822=4cm.

所以六邊形的周長為3+3+3+2+4+2=17cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD中,ADBCBCD=90°,AB=BC+AD,DAC=45°ECD上一點,且BAE=45°.若CD=4,則ABE的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點A(﹣2,1)、B(3,1)、C(2,3).請回答如下問題:

(1)在坐標(biāo)系內(nèi)描出點A、B、C的位置,并求△ABC的面積;

(2)在平面直角坐標(biāo)系中畫出△A′B′C′,使它與△ABC關(guān)于x軸對稱,并寫出△A′B′C′三頂點的坐標(biāo);

(3)若M(x,y)是△ABC內(nèi)部任意一點,請直接寫出這點在△A′B′C′內(nèi)部的對應(yīng)點M′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點ABD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、AE三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.

(1)求證:四邊形ABCD是菱形;

(2)過點AAHBC于點H,求AH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.

(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;

(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在銳角三角形ABC,直線lBC的中垂線,射線m為∠ABC的角平分線,直線lm相交于點P.若∠BAC=60°,ACP=24°,則∠ABP的度數(shù)是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省濟寧市)如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OBx軸的正半軸上,sinAOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則AOF的面積等于( 。

A. 60B. 80C. 30D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)

過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)BDM為直角三角形時,求的值.

查看答案和解析>>

同步練習(xí)冊答案