如圖,在等腰梯形ABCD中,∠BCD=60°,ADBC,且AD=DC,E、F分別在AD、DC的延長線上,且DE=CF,AF、BE于點P.
(1)求證:AF=BE;
(2)請你猜測∠BPF的度數(shù),并證明你的結論.
(1)證明:∵四邊形ABCD是等腰梯形,
∴AB=DC,
又∵AD=DC,
∴BA=AD(等量代換),
又∵∠BAE=∠ADF(等腰梯形的性質),
∵AD=DC,DE=CF,
∴AD+DE=DC+CF,
∴AE=DF(等量代換),
在△BAE和△ADF中,
AE=DF
∠BAE=∠ADF
BA=AD

∴△BAE≌△ADF(SAS),
∴BE=AF(對應邊相等);

(2)猜想∠BPF=120°.
∵由(1)知△BAE≌△ADF(已證),
∴∠ABE=∠DAF(對應角相等).
∴∠BPF=∠ABE+∠BAP=∠BAP+∠EAF=∠BAE(等量代換).
∵ADBC,∠DCB=∠ABC=60°(已知),
∴∠BPF=∠BAE=180°-60°=120°(等量代換).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,在直角梯形ABCD中,ADBC,AB⊥BC,∠DCB=75°,以CD為一邊的等邊△DCE的另一頂點E在腰AB上.
(1)求∠AED的度數(shù);
(2)求證:AB=BC;
(3)如圖2所示,若F為線段CD上一點,∠FBC=30°,求
DF
FC
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,梯形ABCD,ADBC,AB在y軸上,B在原點,BC在x軸上.
(1)若A(0,8),AD長20cm,BC長26cm,求梯形的一腰CD的長度;

(2)若動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以3cm/s的速度運動,P、Q分別從A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t(單位:s).
①當t為何值時,四邊形PQCD為直角梯形;
②當t為何值時,四邊形PQCD為平行四邊形;
③當t為何值時,四邊形PQCD為等腰梯形;

(3)用t表示四邊形PQCD的面積S,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在梯形ABCD中,兩底AB=14cm,CD=6cm,兩底角∠A=30°,∠B=60°,則腰BC的長為(  )
A.8cmB.6cmC.4cmD.3cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在等腰△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分別為點D,E,連接DE.
求證:四邊形BCDE是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若等腰梯形ABCD的上,下底之和為2,并且兩條對角線所交的銳角為60°,則等腰梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBC,AB⊥BC,∠C=60°,AB=2
3
cm,點P從A沿AD邊以每秒1cm的速度向D運動,多少秒后,四邊形PBCD是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,等腰梯形ABCD中,ADBC,AB=DC,AC⊥BD,過D點作DEAC交BC的延長線于E點.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=3,BC=7,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD的頂點B、C都在直角坐標系的x軸上,若點D的坐標是(3,4),則點B的坐標是______.

查看答案和解析>>

同步練習冊答案