【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克 元;

(2)求、與x的函數(shù)表達(dá)式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.

【答案】(1)30;(2),;(3)<x<

【解析】

試題分析:(1)根據(jù)單價(jià)=總價(jià)÷數(shù)量,即可解決問(wèn)題.

(2)y1函數(shù)表達(dá)式=50+單價(jià)×數(shù)量,y2與x的函數(shù)表達(dá)式結(jié)合圖象利用待定系數(shù)法即可解決.

(3)畫出函數(shù)圖象后y1在y2下面即可解決問(wèn)題.

試題解析:(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克300÷10=30元.

故答案為:30.

(2)由題意;

(3)函數(shù)y1的圖象如圖所示,由解得,所以點(diǎn)F坐標(biāo)(,125),由,解得,所以點(diǎn)E坐標(biāo)(,650).

由圖象可知甲采摘園所需總費(fèi)用較少時(shí)<x<

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)在第一象限,過(guò)點(diǎn)Ax軸作垂線,垂足為點(diǎn)B,連接OA,,點(diǎn)MO出發(fā),沿y軸的正半軸以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向x軸負(fù)方向運(yùn)動(dòng),點(diǎn)M與點(diǎn)N同時(shí)出發(fā),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,連接AM,AN,MN

a的值;

當(dāng)時(shí),

請(qǐng)?zhí)骄?/span>,之間的數(shù)量關(guān)系,并說(shuō)明理由;

試判斷四邊形AMON的面積是否變化?若不變化,請(qǐng)求出其值;若變化,請(qǐng)說(shuō)明理由.

當(dāng)時(shí),請(qǐng)求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組 的正整數(shù)解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B、D分別在射線AN、AM.

(1)在圖1中,當(dāng)∠ABC=ADC=90°時(shí),求證:AD+AB=AC

(2)若把(1)中的條件ABC=ADC=90°”改為∠ABC+ADC=180°,其他條件不變,如圖2所示,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.

(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于反比例函數(shù) , 下列說(shuō)法正確的是( 。
A.圖象經(jīng)過(guò)點(diǎn)(2,﹣1)
B.圖象位于第二、四象限
C.當(dāng)x<0時(shí),y隨x的增大而減小
D.當(dāng)x>0時(shí),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,過(guò)對(duì)角線AC的中點(diǎn)O作垂線EF交邊BCAD分別為點(diǎn)E,F,連接AE,CF.

(1)求證:四邊形AECF是菱形;

(2)AD8AB4,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)約用水,某市規(guī)定三口之家每月標(biāo)準(zhǔn)用水量為15立方米,單價(jià)為1.5元/立方米,超過(guò)部分單價(jià)為3元/立方米,某三口之家當(dāng)月用水立方米(且為整數(shù))

⑴.請(qǐng)用正式表示用水立方米的費(fèi)用;

⑵.三口之家當(dāng)月繳水費(fèi)37.50元,這月用了多少立方米的水.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)函數(shù),如果對(duì)于任意的自變量x,這兩個(gè)函數(shù)對(duì)應(yīng)的函數(shù)值記為y1 , y2 , 都有點(diǎn)(x,y1)、(x,y2)關(guān)于點(diǎn)(x,x)對(duì)稱,則稱這兩個(gè)函數(shù)為關(guān)于y=x的對(duì)稱函數(shù).例如, 為關(guān)于y=x的對(duì)稱函數(shù).
(1)判斷:① ;② ;③ ,其中為關(guān)于y=x的對(duì)稱函數(shù)的是(填序號(hào)).
(2)若 )為關(guān)于y=x的對(duì)稱函數(shù).
①求k、b的值.
②對(duì)于任意的實(shí)數(shù)x,滿足x>m時(shí), 恒成立,則m滿足的條件為
(3)若 為關(guān)于y=x的對(duì)稱函數(shù),且對(duì)于任意的實(shí)數(shù)x,都有 ,請(qǐng)結(jié)合函數(shù)的圖象,求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案