【題目】閱讀下列材料并完成任務(wù):

“最短路徑問(wèn)題”是數(shù)學(xué)中一類具有挑戰(zhàn)性的問(wèn)題.其實(shí),數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:古希臘有一位久負(fù)盛名的學(xué)者,名叫海倫.他精通數(shù)學(xué)、物理,聰慧過(guò)人.有一天,一位將軍向他請(qǐng)教一個(gè)問(wèn)題:如圖1,將軍從甲地騎馬出發(fā),要到河邊讓馬飲水,然后再回到乙地的馬棚,為使馬走的路程最短,應(yīng)該讓馬在什么地方飲水?

海倫認(rèn)為以河邊為鏡面,畫(huà)出甲地的鏡像點(diǎn)(垂直河邊的等距離點(diǎn)),然后連接乙地和甲地的鏡像點(diǎn),會(huì)跟河邊相交一點(diǎn),這個(gè)點(diǎn)就是馬飲水的地方,馬走的路程最短(兩點(diǎn)之間直線距離最短).

任務(wù):

1)請(qǐng)你幫海倫在圖1的位置完成作圖,并標(biāo)出馬飲水的地點(diǎn)(畫(huà)出草圖即可);

2)如圖2,的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.請(qǐng)你在軸上找一點(diǎn),使得最小,并直接寫(xiě)出點(diǎn)的坐標(biāo)(保留作圖痕跡);

應(yīng)用:

3)如圖3,圓柱形容器高為,底面周長(zhǎng)為,在杯內(nèi)壁離杯底的點(diǎn)處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿處的點(diǎn)處,點(diǎn)的水平距離等于底面直徑,求螞蟻從外壁處到達(dá)內(nèi)壁處的最短距離.

【答案】(1)詳見(jiàn)解析;(2)圖詳見(jiàn)解析,點(diǎn)的坐標(biāo)為;(3)螞蟻從外壁處到達(dá)內(nèi)壁處的最短距離為.

【解析】

1)根據(jù)在河邊上的同側(cè)有兩個(gè)點(diǎn)A、B,在直線L上有到A、B的距離之和最短的點(diǎn)存在,可以通過(guò)軸對(duì)稱來(lái)確定,即作出其中一點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn),對(duì)稱點(diǎn)與另一點(diǎn)的連線與河邊線的交點(diǎn)就是所要找的點(diǎn).

2)找出C的對(duì)稱點(diǎn)C′,連接BC′,與x軸交點(diǎn)即為Q;

3)將杯子側(cè)面展開(kāi),建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求.

解:(1)如答圖1即為所作圖形.

2)如答圖2,點(diǎn)即為所求.

點(diǎn)的坐標(biāo)為

3)如答圖3是杯子的側(cè)面的部分展開(kāi)圖,

設(shè)點(diǎn)為杯子側(cè)面展開(kāi)圖上邊沿的中點(diǎn),作點(diǎn)關(guān)于上邊沿的對(duì)稱點(diǎn),

連接,則即為最短距離,

設(shè)與展開(kāi)圖的上邊緣交于點(diǎn),過(guò)點(diǎn),且與的延長(zhǎng)線交于點(diǎn),

,

.

中,

.

∴螞蟻從外壁處到達(dá)內(nèi)壁處的最短距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上點(diǎn)C的坐標(biāo)為4,-1).

1請(qǐng)以y軸為對(duì)稱軸畫(huà)出與△ABC對(duì)稱的△A1B1C1,并直接寫(xiě)出點(diǎn)A1B1、C1的坐標(biāo)

2ABC的面積是

3點(diǎn)Pa+1,b-1與點(diǎn)C關(guān)于x軸對(duì)稱a= ,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小華同學(xué)想測(cè)量學(xué)校逸夫樓的高度,他站在B點(diǎn)從A處仰望樓頂D,測(cè)得仰角為30°,再往逸夫樓的方向前進(jìn)14米從E處望樓頂,測(cè)得仰角為60°,已知小華同學(xué)身高(AB)為1.6米,則逸夫樓CD的高度的為( 。1.73

A.12.1B.13.7C.11.5D.13.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)(﹣1,2),點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,ACx軸交于點(diǎn)D,當(dāng)時(shí),則點(diǎn)C的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sinAOC=

(1)求反比例函數(shù)的解析式

(2)連接OB,求AOB的面積

(3) 根據(jù)圖象直接寫(xiě)出當(dāng)時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB上有一點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合),過(guò)點(diǎn)作直線截,使截得的三角形與相似,滿足條件的直線共有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形紙片按如圖方式折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)的落點(diǎn)記為點(diǎn),折痕為,連接

求證:四邊形是菱形;

,,,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(3,),點(diǎn)B的坐標(biāo)為(6,0),將AOB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)一定的角度后得到A′O′B,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形OBCDOB邊在x軸上,ODy軸上,把OBC沿OC折疊得到OCE,OECD交于點(diǎn)F.

(1)求證:OFCF;

(2)若OD=4,OB=8,寫(xiě)出OE所在直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案