【題目】說(shuō)理填空:如圖,點(diǎn)E是DC的中點(diǎn),EC=EB,∠CDA=120°,DF//BE,且DF平分∠CDA,求證:△BEC為等邊三角形.
解: 因?yàn)?/span>DF平分∠CDA(已知)
所以∠FDC=∠________. ( )
因?yàn)椤?/span>CDA=120°(已知)
所以∠FDC=______°.
因?yàn)?/span>DF//BE(已知)
所以∠FDC=∠_________.(____________________________________)
所以∠BEC = 60°,又因?yàn)?/span>EC=EB,(已知)
所以△BCE為等邊三角形.(_____________________________)
【答案】∠ADC;角平分線的意義; 60;∠BEC; 兩直線平行,同位角相等;有一個(gè)角為60°的等腰三角形是等邊三角形.
【解析】
利用角平分線的性質(zhì)得出∠FDC的度數(shù),再利用平行線的性質(zhì)得出∠BEC的度數(shù),進(jìn)而得出△BCE為等邊三角形.
解:∵DF平分∠CDA,(已知)
∴∠FDC=∠ADC.(角平分線的意義)
∵∠CDA=120°,(已知)
∴∠FDC=60°.
∵DF∥BE,(已知)
∴∠FDC=∠BEC=60°.(兩直線平行,同位角相等)
∴∠BEC=60°
又∵EC=EB,(已知)
∴△BCE為等邊三角形.(有一個(gè)角是60°的等腰三角形是等邊三角形)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線 :y=2x+1與直線 :y=mx+4相交于點(diǎn)P(1,b)
(1)求b,m的值
(2)垂直于x軸的直線 x=a與直線 ,分別相交于C,D,若線段CD長(zhǎng)為2,求a的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校的北大門(mén)是由相同菱形框架組成的伸縮電動(dòng)推拉門(mén),如圖是大門(mén)關(guān)閉時(shí)的示意圖,此時(shí) 菱形的邊長(zhǎng)為0.5m,銳角都是50°.求大門(mén)的寬(結(jié)果精確到0.01,參考數(shù)據(jù):sin25°≈0.422 6,cos25°≈0.906 3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過(guò)A,B,C三點(diǎn)的圓上(如圖①)
(1)[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過(guò)A, B,C三點(diǎn)的圓上嗎?
(2)我們知道,如果點(diǎn)D不在經(jīng)過(guò)A,B,C三點(diǎn)的圓上,那么點(diǎn)D要么在圓O外,要么在圓O內(nèi),以下該同學(xué)的想法說(shuō)明了點(diǎn)D不在圓O外。
請(qǐng)結(jié)合圖④證明點(diǎn)D也不在⊙O外.
[結(jié)論]綜上可得結(jié)論:如圖②,如果∠ACB=∠ADB=a(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D在經(jīng)過(guò)A,B,C三點(diǎn)的圓上,即:點(diǎn)A、B、C、D四點(diǎn)共圓。
[應(yīng)用]利用上述結(jié)論解決問(wèn)題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角度得△ADE,連接BE CD,延長(zhǎng)CD交BE于點(diǎn)F,
圖⑤
①求證:點(diǎn)B、C、A、F四點(diǎn)共圓;②求證:BF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.
(1)求證:AE∥CF.
(2)BC平分∠DBE嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為一位旅行者在早晨8時(shí)從城市出發(fā)到郊外所走的路程單位:千米與時(shí)間單位:時(shí)的變量關(guān)系的圖象.根據(jù)圖象回答問(wèn)題:
在這個(gè)變化過(guò)程中,自變量是______ ,因變量是______ .
時(shí)所走的路程是多少?他休息了多長(zhǎng)時(shí)間?
他從休息后直至到達(dá)目的地這段時(shí)間的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,完成下列說(shuō)理過(guò)程
如圖,已知點(diǎn)A,O,B在同一條直線上,OE平分∠BOC,∠DOE=90°
求證:OD是∠AOC的平分線;
證明:如圖,因?yàn)?/span>OE是∠BOC的平分線,
所以∠BOE=∠COE.( 。
因?yàn)椤?/span>DOE=90°
所以∠DOC+∠ =90°
且∠DOA+∠BOE=180°﹣∠DOE= °.
所以∠DOC+∠ 。健螪OA+∠BOE.
所以∠ 。健稀 。
所以OD是∠AOC的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知拋物線C1:y=a(x+1)2﹣4的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求點(diǎn)C的坐標(biāo)及a 的值;
(2)如圖②,拋物線C2與C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移4個(gè)單位,得到拋物線C3 . C3與x軸交于點(diǎn)B、E,點(diǎn)P是直線CE上方拋物線C3上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交CE于點(diǎn)F.
①求線段PF長(zhǎng)的最大值;
②若PE=EF,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com