【題目】如圖,在正方形ABCD中,點E在邊CD上(不與點C,D重合),連接AE,BD交于點F.
(1)若點E為CD中點,AB=2,求AF的長.
(2)若∠AFB=2,求的值.
(3)若點G在線段BF上,且GF=2BG,連接AG,CG,設=x,四邊形AGCE的面積為,ABG的面積為,求的最大值.
【答案】(1);(2);(3).
【解析】
(1)由可得DE的長,利用勾股定理可得AE的長,又易證,由相似三角形的性質(zhì)可得,求解即可得;
(2)如圖(見解析),連接AC與BD交于點O,由正方形的性質(zhì)可知,,,設,在中,可求出,從而可得DF和BF的長,即可得出答案;
(3)設正方形的邊長,可得DE、AO、BO、BD的長,由可得BF的長,又根據(jù)可得BG的長,從而可得的面積,用正方形的面積減去三個三角形的面積可得四邊形AGCE的面積,再利用二次函數(shù)的性質(zhì)求解的最大值.
(1)為CD中點,
,
,即
又
;
(2)如圖,連接AC與BD交于點O
由正方形的性質(zhì)得,
設
在中,
,
;
(3)設正方形的邊長,則
由(1)知,
又
又
又
由二次函數(shù)圖象的性質(zhì)得:當時,有最大值,最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的一半,則這個矩形是給定矩形的“減半”矩形.如圖矩形是矩形ABCD的“減半”矩形.
請你解決下列問題:
(1)當矩形的長和寬分別為1,2時,它是否存在“減半”矩形?請作出判斷,并請說明理由;
(2)邊長為的正方形存在“減半”正方形嗎?如果存在,求出“減半”正方形的邊長;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線(b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,﹣1),C的坐標為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標;
(ii)取BC的中點N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解決問題:
材料1:在研究數(shù)的整除時發(fā)現(xiàn):能被5、25、125、625整除的數(shù)的特征是:分別看這個數(shù)的末一位、末兩位、末三位、末四位即可,推廣成一條結(jié)論;末位能被整除的數(shù),本身必能被整除,反過來,末位不能被整除的數(shù),本身也不可能被整除,例如判斷992250能否被25、625整除時,可按下列步驟計算:
,為整數(shù),能被25整除
,不為整數(shù),不能被625整除
材料2:用奇偶位差法判斷一個數(shù)能否被11這個數(shù)整除時,可把這個數(shù)的奇位上的數(shù)字與偶位上的數(shù)字分別加起來,再求它們的差,看差能否被11整除,若差能被11整除,則原數(shù)能被11整除,反之則不能.
(1)若這個三位數(shù)能被11整除,則 ;在該三位數(shù)末尾加上和為8的兩個數(shù)字,讓其成為一個五位數(shù),該五位數(shù)仍能被11整除,求這個五位數(shù)
(2)若一個六位數(shù)p的最高位數(shù)字為5,千位數(shù)字是個位數(shù)字的2倍,且這個數(shù)既能被125整除,又能被11整除,求這個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是角平分錢,點E在AC上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應,決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).
(1)當AE=8時,求EF的長;
(2)設AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關系式;
②當x為何值時,y有最大值,最大值是多少?
(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y= x2-4x+3.
(1)把這個二次函數(shù)化成的形式并寫出拋物線的頂點坐標;
(2)畫出這個二次函數(shù)的圖象,并利用圖象直接寫出當y>0時,x的取值范圍. 當x取何值時,y隨x的增大而減;
(3)若拋物線與軸的交點記為A,B,該圖象上存在一點C,且△ABC的面積為3,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com