【題目】如圖,拋物線軸交于兩點(diǎn),與軸交于點(diǎn)

求這條拋物線的頂點(diǎn)坐標(biāo);

已知(點(diǎn)在線段),有一動(dòng)點(diǎn)從點(diǎn)沿線段以每秒個(gè)單位長(zhǎng)度的速度移動(dòng):同時(shí)另一個(gè)點(diǎn)以某一速度從點(diǎn)沿線段移動(dòng),經(jīng)過(guò)的移動(dòng),線段垂直平分,求的值;

的情況下,拋物線的對(duì)稱軸上是否存在一點(diǎn),使的值最小?若存在,請(qǐng)求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) ;(2) (3)存在,見(jiàn)解析

【解析】

1)已知拋物線的2點(diǎn),代入可直接求解;

2)根據(jù)A、B的坐標(biāo),得出ADAB的長(zhǎng),通過(guò)推導(dǎo)可證,利用相似得到的比例線段即可求得DQ、PD的長(zhǎng),從而得出t;

3)根據(jù)軸對(duì)稱的最短路徑先作C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),即點(diǎn)A,連接AO與對(duì)稱軸的交點(diǎn)即為點(diǎn)M

1拋物線軸交于兩點(diǎn)

解這個(gè)方程組,得

拋物線的解析式為

這條拋物線的頂點(diǎn)坐標(biāo)為

2點(diǎn)的坐標(biāo)為

拋物線與軸交于點(diǎn)

點(diǎn)的坐標(biāo)為

連接

線段垂直平分

3)存在

連接AQ交對(duì)稱軸于M,此時(shí)MQ+MC為最小,過(guò)點(diǎn)QQN⊥x軸于點(diǎn)N

∵DQ∥AB,

∴∠QDN=∠BAC

sin∠QDN=sin∠BAC=

,

∴QN=

設(shè)直線BC的解析式為:y=kx+b

將點(diǎn)B(0,4)和點(diǎn)C(40)代入可求得:k=1,b=4

直線BC的解析式為:y=x+4

當(dāng)y=時(shí),x=

∴Q(,)

同理可得:AQ的解析式為:y=

當(dāng)x=時(shí),y=

∴M(,)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)EA FCE,且交BC于點(diǎn)F

(1)求證:ABF≌△CDE;

(2)如圖,若∠1=65°,求∠B的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的解析式為、、為常數(shù),),且,下列說(shuō)法:①;②;③方程有兩個(gè)不同根,且;④二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)不同交點(diǎn),其中正確的個(gè)數(shù)是( ).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有一批復(fù)印任務(wù),原來(lái)由甲復(fù)印店承接,按每100頁(yè)40元計(jì)費(fèi).現(xiàn)乙復(fù)印店表示:若學(xué)校先按月付給一定數(shù)額的承包費(fèi),則可按每100頁(yè)15元收費(fèi).兩復(fù)印店每月收費(fèi)情況如圖所示.

1)乙復(fù)印店的每月承包費(fèi)是多少元?

2)當(dāng)每月復(fù)印多少頁(yè)時(shí)兩復(fù)印店實(shí)際收費(fèi)相同,費(fèi)用是多少元?

3)求甲、乙復(fù)印店的函數(shù)表達(dá)式.

4)如果每月復(fù)印頁(yè)數(shù)在1200頁(yè)左右,那么應(yīng)選擇哪家復(fù)印店更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動(dòng)點(diǎn)(B點(diǎn)除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,,交、、,交、

1)求證:

2)求證:;

3)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是一個(gè)演講臺(tái)的側(cè)面示意圖,支架是線段和弧,為臺(tái)面,在水平地面上,.線段,,

1)求臺(tái)面上點(diǎn)處的高度(結(jié)果精確到);

2)如圖2,若弧所在圓的圓心為點(diǎn)的延長(zhǎng)線上,且,求支架的長(zhǎng)度(結(jié)果精確到).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖一次函數(shù)yx1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)yx2bxc的圖象與一次函數(shù)yx1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0)

(1)求二次函數(shù)的解析式;

(2)求四邊形BDEC的面積S;

(3)x軸上是否存在點(diǎn)P,使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出所有的點(diǎn)P,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)學(xué)生的疫情防控意識(shí),響應(yīng)“停課不停學(xué)”號(hào)召,某校組織了一次“疫情防控知識(shí)”專題網(wǎng)上學(xué)習(xí),并進(jìn)行了一次全校2500名學(xué)生都參加的網(wǎng)上測(cè)試.閱卷后,教務(wù)處隨機(jī)抽取了100份答卷進(jìn)行分析統(tǒng)計(jì),發(fā)現(xiàn)考試成績(jī)(分)的最低分為51分,最高分為滿分100分,并繪制了如下不完整的統(tǒng)計(jì)圖表.請(qǐng)根據(jù)圖表提供的信息,解答下列問(wèn)題:

分?jǐn)?shù)段(分)

頻數(shù)(人)

頻率

0.1

18

0.18

35

0.35

12

0.12

合計(jì)

100

1

1)填空:________________,________

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)該校對(duì)成績(jī)?yōu)?/span>的學(xué)生進(jìn)行獎(jiǎng)勵(lì),按成績(jī)從高分到低分設(shè)一、二、三等獎(jiǎng),并且一、二、三等獎(jiǎng)的人數(shù)比例為,請(qǐng)你估算全校獲得二等獎(jiǎng)的學(xué)生人數(shù);

4)結(jié)合調(diào)查的情況,為了提高疫情防控意識(shí),請(qǐng)你給學(xué)校提一條合理性建議.

查看答案和解析>>

同步練習(xí)冊(cè)答案