【題目】如圖,在△ABC,ADBC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,BC=4,BC′的長為 (  )

A. 2 B. 2 C. 4 D. 3

【答案】A

【解析】

連接CC′,

∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,

∴∠ADC′=∠ADC=30°,CD=C′D,

∴∠CDC′=∠ADC+∠ADC′=60°,

∴△DCC′是等邊三角形,

∴∠DC′C=60°,

∵在△ABC中,ADBC邊的中線,

BD=CD,

∴C′D=BD,

∴∠DBC′=∠DC′B=∠CDC′=30°,

∴∠BC′C=∠DC′B+∠DC′C=90°,

∵BC=4,

∴BC′=BCcos∠DBC′=4×=2

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線a≠0)的圖象與x軸交于AB兩點,與y軸交于C點,已知B點坐標為(4,0).

1)求拋物線的解析式;

2)試探究ABC的外接圓的圓心位置,并求出圓心坐標;

3)若點M是線段BC下方的拋物線上一點,求MBC的面積的最大值,并求出此時M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠B30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以MN為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數(shù)是(  )

AD是∠BAC的平分線;②∠ADC60°;③點DAB的中垂線上.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.

(1)求⊙O的半徑長;

(2)求線段DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】結論:直角三角形中,的銳角所對的直角邊等于斜邊的一半.

如圖①,我們用幾何語言表示如下:

∵在中,,

.

你可以利用以上這一結論解決以下問題:

如圖②,在中,,,

1)求的面積;

2)如圖③,射線平分,點從點出發(fā),以每秒1個單位的速度沿著射線的方向運動,過點分別作,.設點的運動時間為秒,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+2px+2p﹣2的頂點為M,

(1)求證拋物線與x軸必有兩個不同交點;

(2)設拋物線與x軸的交點分別為A,B,求實數(shù)p的值使ABM面積達到最。

查看答案和解析>>

同步練習冊答案