【題目】如圖,點(diǎn)E為矩形ABCD中AD邊中點(diǎn),將矩形ABCD沿CE折疊,使點(diǎn)D落在矩形內(nèi)部的點(diǎn)F處,延長CF交AB于點(diǎn)G,連接AF
(1)求證:AF∥CE;
(2)探究線段AF,EF,EC之間的數(shù)量關(guān)系,并說明理由;
(3)若BC=6,BG=8,求AF的長.
【答案】
(1)
證明:連接FD交EC于P,
由折疊矩形ABCD可得,EF=ED,CF=CD,∠DEC=∠FEC,∠EFG=∠EFC=∠EDC=90°,
∵點(diǎn)E為AD的中點(diǎn),
∴AE=ED=EF,
∴∠EAF=∠EFA,
∵∠DEF=∠EAF+∠EFA=∠DEC+∠FEC,
∴∠EAF=∠DEC,
∴AF∥EC;
(2)
∵EF=ED,CF=CD,
∴E,C兩點(diǎn)都在線段DF的中垂線上,即EC⊥DF,
∴∠DPE=90°,
∵AF∥EC,
∴∠AFD=∠DPE=∠EDC=90°,
∵∠EAF=∠DEC,∠AFD=∠EDC,
∴△AFD∽△EDC,
∴ ,即AFEC=DEAD,
∴AFEC=2EF2;
(3)
∵∠GAF+∠EAF=∠GFA+∠EFA=90°,∠EAF=∠EFA,
∴∠GAF=∠GFA,
∴AG=FG,
在Rt△BGC中,BC=6,BG=8,
CG= =10,
∵AB=CD=CF,
∴8+AG=10﹣FG,
∴AG=FG=1,
∴CF=CD=9,
∵AD=BC=6,
∴EF= AD=3,
∴在Rt△DEC中,EC= =3 ,
∵AFEC=2EF2,
∴3 ×AF=2×32,
解得,AF= .
【解析】(1)連接FD交EC于P,根據(jù)折疊的性質(zhì)得到EF=ED,CF=CD,∠DEC=∠FEC,∠EFG=∠EFC=∠EDC=90°,根據(jù)直角三角形的性質(zhì)得到AE=ED=EF,求出∠EAF=∠DEC,根據(jù)平行線的判定定理證明;(2)證明△AFD∽△EDC,根據(jù)相似三角形的性質(zhì)定理計(jì)算即可;(3)根據(jù)勾股定理求出CG,根據(jù)矩形的性質(zhì)求出AB,根據(jù)(2)的結(jié)論計(jì)算即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數(shù)量關(guān)系是_____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論: ①它的圖象與x軸有兩個交點(diǎn);
②如果將它的圖象向左平移3個單位后過原點(diǎn),則m=1;
③如果當(dāng)x=2時的函數(shù)值與x=8時的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)E、F分別是□ABCD的邊BC、CD上的點(diǎn),∠EAF=60°,AF=4
(1) 若AB=2,點(diǎn)E與點(diǎn)B、點(diǎn)F與點(diǎn)D分別重合,求平行四邊形ABCD的面積
(2) 若AB=BC,∠B=∠EAF=60°,求證:△AEF為等邊三角形
(3) 若BE=CE,CF=2DF,AB=3,直接寫出AE的長度(無需解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,把Rt△ABC繞AB旋轉(zhuǎn)一周,所得幾何體的表面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1 , y1),B(x2 , y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )
A.y1<y2
B.y1>y2
C.y的最小值是﹣3
D.y的最小值是﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段AB=12cm,點(diǎn)C為線段AB上的一動點(diǎn),點(diǎn)D,E分別是AC和BC中點(diǎn).
(1)若點(diǎn)C恰好是AB的中點(diǎn),則DE=_______cm;
(2)若AC=4cm,求DE的長;
(3)試說明無論AC取何值(不超過12cm),DE的長不變;
(4)如圖②,已知∠AOB=120°,過角的內(nèi)部任一點(diǎn)C畫射線OC.若OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關(guān).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com