【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O為坐標(biāo)原點(diǎn),正方形OABC的邊OA,OC分別在x軸,y軸上,點(diǎn)B的坐標(biāo)為(4,4),反比例函數(shù)的圖象經(jīng)過(guò)線段BC的中點(diǎn)D,交正方形OABC的另一邊AB于點(diǎn)E.
(1)求k的值;
(2)如圖①,若點(diǎn)P是x軸上的動(dòng)點(diǎn),連接PE,PD,DE,當(dāng)△DEP的周長(zhǎng)最短時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖②,若點(diǎn)Q(x,y)在該反比例函數(shù)圖象上運(yùn)動(dòng)(不與D重合),過(guò)點(diǎn)Q作QM⊥y軸,垂足為M,作QN⊥BC所在直線,垂足為N,記四邊形CMQN的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
【答案】(1)8 ;(2)();(3)S=8-4x,0<x<2;S=4x-8,x>2
【解析】
(1)首先根據(jù)題意求出C點(diǎn)的坐標(biāo),然后根據(jù)中點(diǎn)坐標(biāo)公式求出D點(diǎn)坐標(biāo),由反比例函數(shù)y=(x>0,k≠0)的圖象經(jīng)過(guò)線段BC的中點(diǎn)D,D點(diǎn)坐標(biāo)代入解析式求出k即可;
(2)根據(jù)軸對(duì)稱的性質(zhì)找到點(diǎn)P的位置:作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,連接DE′,交x軸于點(diǎn)P,求得直線DE′與x軸的交點(diǎn)坐標(biāo)即可;
(3)分兩步進(jìn)行解答,①當(dāng)Q在直線BC的上方時(shí),即0<x<2,如圖1,根據(jù)S四邊形CMQN=CNQD列出S關(guān)于x的解析式,②當(dāng)Q在直線BC的下方時(shí),即x>2,如圖2,依然根據(jù)S四邊形CMQN=CNQD列出S關(guān)于x的解析式.
(1)如圖①,
∵正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(4,4),
∴C(0,4),
∵D是BC的中點(diǎn),
∴D(2,4),
∵反比例函數(shù)y=(x>0,k≠0)的圖象經(jīng)過(guò)點(diǎn)D,
∴k=8;
(2)如圖①,作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,連接DE′,交x軸于點(diǎn)P,
把x=4代入y=,得y=2,則E(4,2),
故點(diǎn)E關(guān)于x軸對(duì)稱的點(diǎn)E′(4,-2),
設(shè)直線DE′的方程為y=kx+b(k≠0),
將D(2,4),E′(4,-2)分別代入得到:,
解得,
故直線DE′的方程為y=-3x+10,
當(dāng)y=0時(shí),x=,
即P(,0);
(3)如圖②,
當(dāng)Q在直線BC的上方時(shí),即0<x<2,
如圖1,∵點(diǎn)Q(x,y)在該反比例函數(shù)的圖象上運(yùn)動(dòng),
∴y=,
∴S四邊形CMQN=CNQD=x(-4)=8-4x(0<x<2),
如圖③,
當(dāng)Q在直線BC的下方時(shí),即x>4,同理求出S四邊形CMQN=CNQD=x(4-)=4x-8(x>2),
綜上S=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)七、八年級(jí)各選名同學(xué)參加“創(chuàng)全國(guó)文明城市”知識(shí)競(jìng)賽,計(jì)分分制,選手得分均為整數(shù),成績(jī)達(dá)到分或分以上為合格,達(dá)到分或分以上為優(yōu)秀,這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)分析表如下,其中七年級(jí)代表隊(duì)得分、分選手人數(shù)分別為,.
隊(duì)列 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級(jí) | |||||
八年級(jí) |
(1)根據(jù)圖表中的數(shù)據(jù),求,的值.
(2)直接寫出表中的 , .
(3)你是八年級(jí)學(xué)生,請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( )
A.3B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,是中線,,垂足為,的延長(zhǎng)線交于點(diǎn),若,則的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM, △CBN是等邊三角形,連結(jié)AN,交MC于點(diǎn)E,連結(jié)MB交CN于F.
(1)求證:AN=BM;
(2)求證: ∠CEA=∠CFM .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)三角形的兩條邊的和是第三邊的兩倍,則稱這個(gè)三角形是“優(yōu)三角形”,這兩條邊的比稱為“優(yōu)比”(若這兩邊不等,則優(yōu)比為較大邊與較小邊的比),記為.
(1)命題:“等邊三角形為優(yōu)三角形,其優(yōu)比為1”,是真命題還是假命題?
(2)已知為優(yōu)三角形,,,,
①如圖1,若,,,求的值.
②如圖2,若,求優(yōu)比的取值范圍.
(3)已知是優(yōu)三角形,且,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),A(4,0),B(4,2),C(0,2),將△OAB沿直線OB折疊,使得點(diǎn)A落在點(diǎn)D處,OD與BC交于點(diǎn)E,則OD所在直線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與思考:
因式分解----“分組分解法”:分組分解法指通過(guò)分組分解的方式來(lái)分解用提公因式法和公式法無(wú)法直接分解的多項(xiàng)式,比如,四項(xiàng)的多項(xiàng)式一般按照“兩兩”分組或“三一”分組進(jìn)行分組分解.分析多項(xiàng)式的特點(diǎn),恰當(dāng)?shù)姆纸M是分組分解法的關(guān)鍵.
例1:“兩兩”分組:
我們把和兩項(xiàng)分為一組,和兩項(xiàng)分為一組,分別提公因式,立即解除了困難.同樣.這道題也可以這樣做:
例2:“三一”分組:
我們把,,三項(xiàng)分為一組,運(yùn)用完全平方公式得到,再與-1用平方差公式分解,問(wèn)題迎刃而解.
歸納總結(jié):用分組分解法分解因式的方法是先恰當(dāng)分組,然后用提公因式法或運(yùn)用公式法繼續(xù)分解.
請(qǐng)同學(xué)們?cè)陂喿x材料的啟發(fā)下,解答下列問(wèn)題:
(1)分解因式:
①;
②
(2)若多項(xiàng)式利用分組分解法可分解為,請(qǐng)寫出,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(diǎn)(D,E,F三點(diǎn)不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說(shuō)明理由;
(3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請(qǐng)?zhí)剿?/span>a,b,c滿足的等量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com