【題目】在甲、乙兩個(gè)不透明的口袋中裝有質(zhì)地、大小相同的小球,甲袋中有2個(gè)白球,1個(gè)黃球和1個(gè)紅球:乙袋中裝有1個(gè)白球,1個(gè)黃球和若干個(gè)紅球,從乙盒中仼意摸取一球?yàn)榧t球的概率是從甲盒中仼意摸取一球?yàn)榧t球的概率的2倍.
(1)乙袋中紅球的個(gè)數(shù)為 .
(2)若摸到白球記1分,摸到黃球記2分,摸到紅球記0分,小明從甲、乙兩袋中先后分別任意摸取一球,請用樹狀圖或列表的方法求小明摸得兩個(gè)球得2分的概率.
【答案】(1)2;(2)小明摸得兩個(gè)球得2分的概率為.
【解析】
(1)首先設(shè)乙袋中紅球的個(gè)數(shù)為x個(gè),根據(jù)題意可得方程:,解此方程即可求得答案;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小明摸得兩個(gè)球得2分的情況,再利用概率公式求解即可求得答案.
(1)甲袋中摸出紅球的概率為,則乙袋中摸出紅球的概率為,
設(shè)乙袋中紅球的個(gè)數(shù)為x個(gè),
根據(jù)題意得:,
解得:x=2,
經(jīng)檢驗(yàn),x=2是原分式方程的解,
∴乙袋中紅球的個(gè)數(shù)是2個(gè),
故答案為:2;
(2)畫樹狀圖得:
∵共有16種等可能的結(jié)果,
又∵摸到白球記1分,摸到黃球記2分,摸到紅球記0分,
∴小明摸得兩個(gè)球得2分的有5種情況,
∴小明摸得兩個(gè)球得2分的概率為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一工地計(jì)劃租用甲、乙兩輛車清理淤泥,從運(yùn)輸量來估算,若租兩車合運(yùn),10天可以完成任務(wù),若甲車的效率是乙車效率的2倍.
甲、乙兩車單獨(dú)完成任務(wù)分別需要多少天?
已知兩車合運(yùn)共需租金65000元,甲車每天的租金比乙車每天的租金多1500元試問:租甲乙車兩車、單獨(dú)租甲車、單獨(dú)租乙車這三種方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了提高學(xué)生跳遠(yuǎn)科目的成績,對(duì)全校500名九年級(jí)學(xué)生開展了為期一個(gè)月的跳遠(yuǎn)科目強(qiáng)化訓(xùn)練.王老師為了了解學(xué)生的訓(xùn)練情況,強(qiáng)化訓(xùn)練前,隨機(jī)抽取了該年級(jí)部分學(xué)生進(jìn)行跳遠(yuǎn)測試,經(jīng)過一個(gè)月的強(qiáng)化訓(xùn)練后,再次測得這部分學(xué)生的成績,將兩次測得的成績制作成如圖所示的統(tǒng)計(jì)圖和不完整的統(tǒng)計(jì)表
訓(xùn)練后學(xué)生成績統(tǒng)計(jì)表
成績/分?jǐn)?shù) | 6分 | 7分 | 8分 | 9分 | 10分 |
人數(shù)/人 | 1 | 3 | 8 | 5 | n |
根據(jù)以上信息回答下列問題
(1)訓(xùn)練后學(xué)生成績統(tǒng)計(jì)表中n= ,并補(bǔ)充完成下表:
平均分 | 中位數(shù) | 眾數(shù) | |
訓(xùn)練前 | 7.5 | 8 | |
訓(xùn)練后 | 8 |
(2)若跳遠(yuǎn)成績9分及以上為優(yōu)秀,估計(jì)該校九年級(jí)學(xué)生訓(xùn)練后比訓(xùn)練前達(dá)到優(yōu)秀的人數(shù)增加了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在矩形ABCD中,點(diǎn)F為AD中點(diǎn),點(diǎn)E為AB邊上一點(diǎn),連接CE、EF、CF,EF平分∠AEC.
(1)如圖1,求證:CF⊥EF;
(2)如圖2,延長CE、DA交于點(diǎn)K, 過點(diǎn)F作FG∥AB交CE于點(diǎn)G若,點(diǎn)H為FG上一點(diǎn),連接CH,若∠CHG=∠BCE, 求證:CH=FK;
(3)如圖3, 過點(diǎn)H作HN⊥CH交AB于點(diǎn)N,若EN=11,FH-GH=1,求GK長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F為BD所在直線上的兩點(diǎn).若AE=,∠EAF=135°,則以下結(jié)論正確的是( 。
A. DE=1 B. tan∠AFO= C. AF= D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中且,又、為的三等分點(diǎn).
(1)求證;
(2)證明:;
(3)若點(diǎn)為線段上一動(dòng)點(diǎn),連接則使線段的長度為整數(shù)的點(diǎn)的個(gè)數(shù)________.(直接寫答案無需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC.D,E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:
①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2.
其中正確的是( )
A.②④ B.①④ C.②③ D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com