【題目】如圖,拋物線(xiàn)yax2+bx+c的頂點(diǎn)為D,與x軸交點(diǎn)A,B的橫坐標(biāo)分別為﹣13,與y軸負(fù)半軸交于點(diǎn)C.下面五個(gè)結(jié)論:

①2a+b0

②4a+2b+c0;

對(duì)任意實(shí)數(shù)x,ax2+bxa+b;

只有當(dāng)a時(shí),△ABD是等腰直角三角形;

使△ABC為等腰三角形的a值可以有3個(gè).

其中正確的結(jié)論有_____.(填序號(hào))

【答案】①③④

【解析】

先根據(jù)圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為﹣1,3確定出AB的長(zhǎng)及對(duì)稱(chēng)軸,再由拋物線(xiàn)的開(kāi)口方向判斷a0的關(guān)系,由拋物線(xiàn)與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線(xiàn)與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

解:∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3

AB4,

∴對(duì)稱(chēng)軸x=﹣1

2a+b0;

正確,符合題意;

由圖象看,當(dāng)x2時(shí),y4a+2b+c0,

錯(cuò)誤,不符合題意;

函數(shù)的對(duì)稱(chēng)軸為直線(xiàn)x1,函數(shù)在x1時(shí),取得最小值,

ax2+bx+ca+b+c,

ax2+bxa+b正確,符合題意;

要使△ABD為等腰直角三角形,必須保證Dx軸的距離等于AB長(zhǎng)的一半;

Dx軸的距離就是當(dāng)x1時(shí)y的值的絕對(duì)值.

當(dāng)x1時(shí),ya+b+c,

|a+b+c|2

∵當(dāng)x1時(shí),y0

a+b+c=﹣2,

又∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3,

∴當(dāng)x=﹣1時(shí)y0,即ab+c0

當(dāng)x3時(shí),y0

9a+3b+c0,

解這三個(gè)方程可得:b=﹣1,a,c=﹣

正確,符合題意;

要使△ACB為等腰三角形,則必須保證ABBC4ABAC4ACBC

當(dāng)ABBC4時(shí),

AO1,△BOC為直角三角形,

又∵OC的長(zhǎng)即為|c|,

c21697,

∵由拋物線(xiàn)與y軸的交點(diǎn)在y軸的負(fù)半軸上,

c=﹣,

2a+b0、ab+c0聯(lián)立組成解方程組,解得a;

同理當(dāng)ABAC4時(shí),

AO1,△AOC為直角三角形,

又∵OC的長(zhǎng)即為|c|,

c216115

∵由拋物線(xiàn)與y軸的交點(diǎn)在y軸的負(fù)半軸上,

c=﹣,

2a+b0、ab+c0聯(lián)立組成解方程組,解得a;

同理當(dāng)ACBC時(shí)

在△AOC中,AC21+c2,

在△BOCBC2c2+9,

ACBC

1+c2c2+9,此方程無(wú)解.

經(jīng)解方程組可知只有兩個(gè)a值滿(mǎn)足條件.

錯(cuò)誤.

故答案為:①③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A是直線(xiàn)x=1上一個(gè)動(dòng)點(diǎn),以A為頂點(diǎn)的拋物線(xiàn)y1=a(x1)2+t和拋物線(xiàn)y2=ax2交于點(diǎn)B(AB不重合,a是常數(shù)),直線(xiàn)AB和拋物線(xiàn)y2=ax2交于點(diǎn)B,C,直線(xiàn)x=1和拋物線(xiàn)y2=ax2交于點(diǎn)D(如圖僅供參考)

(1)求點(diǎn)B的坐標(biāo)(用含有a,t的式子表示);

(2)a0,且點(diǎn)A向上移動(dòng)時(shí),點(diǎn)B也向上移動(dòng),求的范圍;

(3)當(dāng)BC重合時(shí),求的值;

(4)當(dāng)a0,且△BCD的面積恰好為3a時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)批發(fā)商銷(xiāo)售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門(mén)規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿(mǎn)足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)


50

60

70

80


銷(xiāo)售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?

3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,該拋物線(xiàn)是由yx2平移后得到,它的頂點(diǎn)坐標(biāo)為(﹣,﹣),并與坐標(biāo)軸分別交于A,B,C三點(diǎn).

1)求A,B的坐標(biāo).

2)如圖2,連接BCAC,在第三象限的拋物線(xiàn)上有一點(diǎn)P,使∠PCA=∠BCO,求點(diǎn)P的坐標(biāo).

3)如圖3,直線(xiàn)yax+bb0)與該拋物線(xiàn)分別交于P,G兩點(diǎn),連接BP,BG分別交y軸于點(diǎn)DE.若ODOE3,請(qǐng)?zhí)剿?/span>ab的數(shù)量關(guān)系.并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,EB的直徑,且,在BE的延長(zhǎng)線(xiàn)上取點(diǎn)P,使,AEP上一點(diǎn),過(guò)A的切線(xiàn),切點(diǎn)為D,過(guò)DF,過(guò)BAD的垂線(xiàn)BH,交AD的延長(zhǎng)線(xiàn)于當(dāng)點(diǎn)AEP上運(yùn)動(dòng),不與E重合時(shí):

是否總有,試證明你的結(jié)論;

設(shè),求yx的函數(shù)關(guān)系,并寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家商店經(jīng)營(yíng)一種玩具,進(jìn)價(jià)為每件50元,調(diào)查市場(chǎng)發(fā)現(xiàn)日銷(xiāo)售量y(件)是關(guān)于售價(jià)x(元/件)的一次函數(shù),相關(guān)數(shù)據(jù)如表,商店每天的總支出是600元.

售價(jià)(元/件)

50

55

60

65

日銷(xiāo)售量y/

80

70

60

50

1)直接寫(xiě)出yx之間的函數(shù)關(guān)系式.(不要求寫(xiě)出自變量x的取值范圍)

2)商店在“五一”這天盡可能優(yōu)惠顧客,正好收支平衡(收入=支出),問(wèn)當(dāng)天玩具的售價(jià)為多少元/件.

3)商店最早需要多少天,純利可以突破萬(wàn)元,玩具的售價(jià)應(yīng)定為多少元/件?(每天純利=每天的銷(xiāo)售額﹣成本﹣每天的支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種洗衣機(jī)在洗滌衣服時(shí),經(jīng)歷了進(jìn)水、清洗、排水、脫水四個(gè)連續(xù)的過(guò)程,其中進(jìn)水、清洗、排水時(shí)洗衣機(jī)中的水量y(升)與時(shí)間x(分鐘)之間的關(guān)系如圖所示.已知:洗衣機(jī)的排水速度為每分鐘20升.

1)求排水時(shí)yx之間的函數(shù)解析式;

2)洗衣機(jī)中的水量到達(dá)某一水位后,過(guò)13.7分鐘又到達(dá)該水位,求該水位為多少升.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A1,a),Bmn)(m1)均在正比例函數(shù)y2x的圖象上,反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)A,過(guò)點(diǎn)BBDx軸于D,交反比例函數(shù)y的圖象于點(diǎn)C,連接AC,則下列結(jié)論正確的是( 。

A.當(dāng)m2時(shí),ACOB

B.當(dāng)AB2OA時(shí),BC2CD

C.存在一個(gè)m,使得SBOD3SOCD

D.四邊形AODC的面積固定不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)過(guò)點(diǎn),且與直線(xiàn)交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為

1)求拋物線(xiàn)的解析式;

2)點(diǎn)D為拋物線(xiàn)上位于直線(xiàn)上方的一點(diǎn),過(guò)點(diǎn)D軸交直線(xiàn)于點(diǎn)E,點(diǎn)P為對(duì)稱(chēng)軸上一動(dòng)點(diǎn),當(dāng)線(xiàn)段的長(zhǎng)度最大時(shí),求的最小值;

3)設(shè)點(diǎn)M為拋物線(xiàn)的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案