【題目】如圖,拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)為D,與x軸交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3,與y軸負(fù)半軸交于點(diǎn)C.下面五個(gè)結(jié)論:
①2a+b=0;
②4a+2b+c>0;
③對(duì)任意實(shí)數(shù)x,ax2+bx≥a+b;
④只有當(dāng)a=時(shí),△ABD是等腰直角三角形;
⑤使△ABC為等腰三角形的a值可以有3個(gè).
其中正確的結(jié)論有_____.(填序號(hào))
【答案】①③④.
【解析】
先根據(jù)圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3確定出AB的長(zhǎng)及對(duì)稱(chēng)軸,再由拋物線(xiàn)的開(kāi)口方向判斷a與0的關(guān)系,由拋物線(xiàn)與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線(xiàn)與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解:①∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3,
∴AB=4,
∴對(duì)稱(chēng)軸x=﹣=1,
即2a+b=0;
故①正確,符合題意;
②由圖象看,當(dāng)x=2時(shí),y=4a+2b+c<0,
故②錯(cuò)誤,不符合題意;
③函數(shù)的對(duì)稱(chēng)軸為直線(xiàn)x=1,函數(shù)在x=1時(shí),取得最小值,
故ax2+bx+c≥a+b+c,
即ax2+bx≥a+b正確,符合題意;
④要使△ABD為等腰直角三角形,必須保證D到x軸的距離等于AB長(zhǎng)的一半;
D到x軸的距離就是當(dāng)x=1時(shí)y的值的絕對(duì)值.
當(dāng)x=1時(shí),y=a+b+c,
即|a+b+c|=2,
∵當(dāng)x=1時(shí),y<0,
∴a+b+c=﹣2,
又∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3,
∴當(dāng)x=﹣1時(shí)y=0,即a﹣b+c=0;
當(dāng)x=3時(shí),y=0.
∴9a+3b+c=0,
解這三個(gè)方程可得:b=﹣1,a=,c=﹣,
故④正確,符合題意;
⑤要使△ACB為等腰三角形,則必須保證AB=BC=4或AB=AC=4或AC=BC,
當(dāng)AB=BC=4時(shí),
∵AO=1,△BOC為直角三角形,
又∵OC的長(zhǎng)即為|c|,
∴c2=16﹣9=7,
∵由拋物線(xiàn)與y軸的交點(diǎn)在y軸的負(fù)半軸上,
∴c=﹣,
與2a+b=0、a﹣b+c=0聯(lián)立組成解方程組,解得a=;
同理當(dāng)AB=AC=4時(shí),
∵AO=1,△AOC為直角三角形,
又∵OC的長(zhǎng)即為|c|,
∴c2=16﹣1=15,
∵由拋物線(xiàn)與y軸的交點(diǎn)在y軸的負(fù)半軸上,
∴c=﹣,
與2a+b=0、a﹣b+c=0聯(lián)立組成解方程組,解得a=;
同理當(dāng)AC=BC時(shí)
在△AOC中,AC2=1+c2,
在△BOC中BC2=c2+9,
∵AC=BC,
∴1+c2=c2+9,此方程無(wú)解.
經(jīng)解方程組可知只有兩個(gè)a值滿(mǎn)足條件.
故⑤錯(cuò)誤.
故答案為:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A是直線(xiàn)x=1上一個(gè)動(dòng)點(diǎn),以A為頂點(diǎn)的拋物線(xiàn)y1=a(x﹣1)2+t和拋物線(xiàn)y2=ax2交于點(diǎn)B(A,B不重合,a是常數(shù)),直線(xiàn)AB和拋物線(xiàn)y2=ax2交于點(diǎn)B,C,直線(xiàn)x=1和拋物線(xiàn)y2=ax2交于點(diǎn)D.(如圖僅供參考)
(1)求點(diǎn)B的坐標(biāo)(用含有a,t的式子表示);
(2)若a<0,且點(diǎn)A向上移動(dòng)時(shí),點(diǎn)B也向上移動(dòng),求的范圍;
(3)當(dāng)B,C重合時(shí),求的值;
(4)當(dāng)a>0,且△BCD的面積恰好為3a時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)批發(fā)商銷(xiāo)售成本為20元/千克的某產(chǎn)品,根據(jù)物價(jià)部門(mén)規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿(mǎn)足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:
售價(jià)x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷(xiāo)售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?
(3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,該拋物線(xiàn)是由y=x2平移后得到,它的頂點(diǎn)坐標(biāo)為(﹣,﹣),并與坐標(biāo)軸分別交于A,B,C三點(diǎn).
(1)求A,B的坐標(biāo).
(2)如圖2,連接BC,AC,在第三象限的拋物線(xiàn)上有一點(diǎn)P,使∠PCA=∠BCO,求點(diǎn)P的坐標(biāo).
(3)如圖3,直線(xiàn)y=ax+b(b<0)與該拋物線(xiàn)分別交于P,G兩點(diǎn),連接BP,BG分別交y軸于點(diǎn)D,E.若ODOE=3,請(qǐng)?zhí)剿?/span>a與b的數(shù)量關(guān)系.并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,EB是的直徑,且,在BE的延長(zhǎng)線(xiàn)上取點(diǎn)P,使,A是EP上一點(diǎn),過(guò)A作的切線(xiàn),切點(diǎn)為D,過(guò)D作于F,過(guò)B作AD的垂線(xiàn)BH,交AD的延長(zhǎng)線(xiàn)于當(dāng)點(diǎn)A在EP上運(yùn)動(dòng),不與E重合時(shí):
是否總有,試證明你的結(jié)論;
設(shè),,求y和x的函數(shù)關(guān)系,并寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家商店經(jīng)營(yíng)一種玩具,進(jìn)價(jià)為每件50元,調(diào)查市場(chǎng)發(fā)現(xiàn)日銷(xiāo)售量y(件)是關(guān)于售價(jià)x(元/件)的一次函數(shù),相關(guān)數(shù)據(jù)如表,商店每天的總支出是600元.
售價(jià)(元/件) | 50 | 55 | 60 | 65 |
日銷(xiāo)售量y/件 | 80 | 70 | 60 | 50 |
(1)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式.(不要求寫(xiě)出自變量x的取值范圍)
(2)商店在“五一”這天盡可能優(yōu)惠顧客,正好收支平衡(收入=支出),問(wèn)當(dāng)天玩具的售價(jià)為多少元/件.
(3)商店最早需要多少天,純利可以突破萬(wàn)元,玩具的售價(jià)應(yīng)定為多少元/件?(每天純利=每天的銷(xiāo)售額﹣成本﹣每天的支出)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種洗衣機(jī)在洗滌衣服時(shí),經(jīng)歷了進(jìn)水、清洗、排水、脫水四個(gè)連續(xù)的過(guò)程,其中進(jìn)水、清洗、排水時(shí)洗衣機(jī)中的水量y(升)與時(shí)間x(分鐘)之間的關(guān)系如圖所示.已知:洗衣機(jī)的排水速度為每分鐘20升.
(1)求排水時(shí)y與x之間的函數(shù)解析式;
(2)洗衣機(jī)中的水量到達(dá)某一水位后,過(guò)13.7分鐘又到達(dá)該水位,求該水位為多少升.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,a),B(m,n)(m>1)均在正比例函數(shù)y=2x的圖象上,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A,過(guò)點(diǎn)B作BD⊥x軸于D,交反比例函數(shù)y=的圖象于點(diǎn)C,連接AC,則下列結(jié)論正確的是( 。
A.當(dāng)m=2時(shí),AC⊥OB
B.當(dāng)AB=2OA時(shí),BC=2CD
C.存在一個(gè)m,使得S△BOD=3S△OCD
D.四邊形AODC的面積固定不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)過(guò)點(diǎn),且與直線(xiàn)交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)D為拋物線(xiàn)上位于直線(xiàn)上方的一點(diǎn),過(guò)點(diǎn)D作軸交直線(xiàn)于點(diǎn)E,點(diǎn)P為對(duì)稱(chēng)軸上一動(dòng)點(diǎn),當(dāng)線(xiàn)段的長(zhǎng)度最大時(shí),求的最小值;
(3)設(shè)點(diǎn)M為拋物線(xiàn)的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com