【題目】已知拋物線軸交于兩點(點在 點左側(cè)),對稱軸為直線

(1)的值為 ,在坐標系中利用描點法畫出此拋物線;

···

···

···

···

(2)若直線過點且與拋物線交于點,請根據(jù)圖象寫出:當時,的取值范圍是

【答案】1-1,圖像見解析;(2x-2x1

【解析】

1)根據(jù)對稱軸列出方程求解即可得到m的值,然后根據(jù)二次函數(shù)圖象的畫法描點,連接即可;(2)根據(jù)函數(shù)圖象寫出拋物線在直線上方部分的x的取值范圍即可.

1)拋物線對稱軸為直線,

解得m=-1

∴函數(shù)解析式為y=x2+2x-3,

拋物線如圖所示:

x

-3

-2

-1

0

1

y

0

-3

-4

-3

0

;

2)由(1)可知點B的坐標為(10),

B1,0),P-2,-3)代入可得,

解得,

∴直線的解析式為

圖像如圖所示:

由圖像可知,當∴x-2x1時,y2y1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AEFG,點EBD上;

1)求證:FDAB;(2)連接AF,求證:∠DAF=∠EFA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若b是正數(shù).直線lyby軸交于點A,直線ayxby軸交于點B;拋物線Ly=﹣x2+bx的頂點為C,且Lx軸右交點為D

(1)AB6,求b的值,并求此時L的對稱軸與a的交點坐標;

(2)當點Cl下方時,求點Cl距離的最大值;

(3)x0≠0,點(x0,y1),(x0,y2),(x0y3)分別在l,aL上,且y3y1,y2的平均數(shù),求點(x0,0)與點D間的距離;

(4)在La所圍成的封閉圖形的邊界上,把橫、縱坐標都是整數(shù)的點稱為“美點”,分別直接寫出b=2019和b2019.5時“美點”的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形 ABCD 中,過點 A AEDC DC 的延長線于點 E,過點 D DF // EA BA 的延長線于點 F

1)求證:四邊形 AEDF 是矩形;

2)連接BD,若 AB=AE=2,tan FAD ,求 BD 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+4x+c(a≠0)經(jīng)過點A(3,﹣4)和B(0,2).

(1)求拋物線的表達式和頂點坐標;

(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點).將圖象M沿直線x=3翻折,得到圖象N.若過點C(9,4)的直線y=kx+b與圖象M、圖象N都相交,且只有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,BAD的平分線交BCE,交DC的延長線于F,BGAEGBG=,則EFC的周長為_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于點和點軸交于點,過點的直線交拋物線的另一個點為點,的橫坐標為

的值.

在直線下方的拋物線上任一點,點的橫坐標為過點軸,交于點求出的函數(shù)關(guān)系式,并直接寫出的取值范圍.

問的條件下,過點,垂足為點,連接, 成面積比為的兩個三角形,求出此時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點C在直線b上,直線aAB于點D,交AC于點E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大學生小李和同學一起自主創(chuàng)業(yè)開辦了一家公司,公司對經(jīng)營的盈虧情況在每月的最后一天結(jié)算一次.112月份中,該公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系.

1)求yx函數(shù)關(guān)系式.

2)該公司從哪個月開始扭虧為盈(當月盈利)? 直接寫出9月份一個月內(nèi)所獲得的利潤.

3)在前12 個月中,哪個月該公司所獲得利潤最大?最大利潤為多少?

查看答案和解析>>

同步練習冊答案