【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF;
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
【答案】(1)詳見解析;(2)BE+CF>EF,證明詳見解析
【解析】
(1)先利用ASA判定△BGDCFD,從而得出BG=CF;
(2)利用全等的性質(zhì)可得GD=FD,再有DE⊥GF,從而得到EG=EF,兩邊之和大于第三邊從而得出BE+CF>EF.
解:(1)∵BG∥AC,
∴∠DBG=∠DCF.
∵D為BC的中點(diǎn),
∴BD=CD
又∵∠BDG=∠CDF,
在△BGD與△CFD中,
∵
∴△BGD≌△CFD(ASA).
∴BG=CF.
(2)BE+CF>EF.
∵△BGD≌△CFD,
∴GD=FD,BG=CF.
又∵DE⊥FG,
∴EG=EF(垂直平分線到線段端點(diǎn)的距離相等).
∴在△EBG中,BE+BG>EG,
即BE+CF>EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像過點(diǎn),,與軸交于另一點(diǎn),且對稱軸是直線.
(1)求該二次函數(shù)的解析式;
(2)若是上的一點(diǎn),作交于,當(dāng)面積最大時(shí),求的坐標(biāo);
(3)是軸上的點(diǎn),過作軸,與拋物線交于,過作軸于.當(dāng)以、、為頂點(diǎn)的三角形與、、為頂點(diǎn)的三角形相似時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo)為( 。
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,作ED⊥EB交AB于點(diǎn)D,⊙O是△BED的外接圓.
(1)求證:AC是⊙O的切線;
(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:用分離系數(shù)法進(jìn)行整式的加減運(yùn)算.
我們已經(jīng)學(xué)過整式的加減,而我們可以列豎式進(jìn)行整式的加減運(yùn)算,只要將參加運(yùn)算的整式連同字母進(jìn)行降冪排列,凡缺項(xiàng)則留出空位或添零,然后讓常數(shù)項(xiàng)對齊(即右對齊)即可.例如,計(jì)算(x3﹣2x2﹣5)﹣(x﹣2x2﹣1)時(shí),我們可以用下列豎式計(jì)算:
豎式:
(x3﹣2x2+5)﹣(x﹣2x2﹣1)=x3﹣x﹣4
這種方法叫做分離系數(shù)法.用分離系數(shù)法計(jì)算:
(1)(2x2+4x﹣3)+(5﹣4x+x2);
(2)(3y3﹣5y2﹣6)﹣(y﹣2+3y3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,O是AC上一動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.若點(diǎn)O運(yùn)動到AC的中點(diǎn),則∠ACB=_____°時(shí),四邊形AECF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017山東省菏澤市,第20題,7分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象在第一象限交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過B作BD⊥y軸,垂足為D,交OA于C,若OC=CA.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們規(guī)定:當(dāng)x取任意一個(gè)值時(shí),x對應(yīng)的函數(shù)值分別為y1和y2,若y1≠y2,取y1和y2中較小值為M;若y1=y2,記M=y1=y2.①當(dāng)x>2時(shí),M=y2;②當(dāng)x<0時(shí),M隨x的增大而增大;③使得M大于4的x的值不存在;④若M=2,則x=1.上述結(jié)論正確的是_____(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用對稱性可設(shè)計(jì)出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點(diǎn)都在格點(diǎn)上).
(1)先作出該四邊形關(guān)于直線成軸對稱的圖形,再作出你所作的圖形連同原四邊形繞0點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90o后的圖形;
(2)完成上述設(shè)計(jì)后,整個(gè)圖案的面積等于_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com