(7分)如圖,已知拋物線經(jīng)過A(2,0)、B(0,-6)兩點,其對稱軸與軸交于點C.

(1)求該拋物線和直線BC的解析式;
(2)設(shè)拋物線與直線BC相交于點D,連結(jié)AB、AD,求△ABD的面積.
(1)(2)

試題分析:
(1)將A(2,0)、B(0,-6)代入中可得
b="4," c=-6 ∴該拋物線的解析式為.-----1分
∴拋物線對稱軸為.   ∴C(4,0)-------- 2分                                         
設(shè)直線BC的解析式為 將B(0,-6),C(4,0)代入
.---------------------------------3分
∴直線BC的解析式為.-------------------- 4分                  
(2) 解得,∴D(5,)-----------------6分         
 ---------------7分
點評:此類試題屬于難度一般的試題,考生在解答此類試題時要注意分析求解函數(shù)解析式的基本方法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線
(1)用配方法將化成的形式;
(2)將此拋物線向右平移1個單位,再向上平移2個單位,求平移后所得拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知二次函數(shù)圖象的頂點為原點,直線的圖象與該二次函數(shù)的圖象交于A點(8,8),直線與x軸的交點為C,與y軸的交點為B.

(1)求這個二次函數(shù)的解析式與B點坐標(biāo);
(2)P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于D點,與x軸交于點E.設(shè)線段PD的長為h,點P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點P,使得以點P、D、B為頂點的三角形與△BOC相似?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知,二次函數(shù)f(x)=ax2+bx+c的部分對應(yīng)值如下表,則f(-3)=    。
x
-2
-1
0
1
2
3
4
5
y
5
0
-3
-4
-3
0
5
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線 y=2(x-1)2-3與y軸的交點坐標(biāo)是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向左平移2個單位后所得到的拋物線為(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

九年級學(xué)生小雨、小華、小星暑假到某超市參加社會實踐活動,在活動中他們參加了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結(jié)束后的對話。
小華:“如果以10元/千克的價格銷售,那么每天可獲取利潤600元!
小雨:“如果以12元/千克的價格銷售,那么每天可售出200千克!
小星:“通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量(千克)與銷售單價(元)之間存在一次函數(shù)關(guān)系。”
(1)求(千克)與(元)()之間的函數(shù)關(guān)系式;
(2)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于250千克,則此時該超市銷售這種水果每天獲取的利潤最大是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線向右平移1個單位后,得到的拋物線的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線軸沒有交點,則的取值范圍是          .

查看答案和解析>>

同步練習(xí)冊答案